The Back-Propagation Algorithm

1 Introduction

Having looked at learning in a single TLU, we now look at tharfeng algorithm for a fully connected, layered,
feedforward network. The algorithm we look at is called Ibaek-propagation algorithm (or theback-prop algorithm)
for reasons that will become clear below.

There is a change we have to make to the TLUs in our networkderdo make this algorithm work properly. We
have to redefineg, the activation function. We neegdo be a function that can be differentiated. At the momeig,a
step-function, and these cannot be continuously difféatad. We replace our step-function by an s-shaped function
called asigmoid. We will use:

1
g(z) =def m

Note that previously TLUs (using step-functions) couldputtonly 0 or 1. But now, TLUs (using sigmoid-functions)
can output any real numbers between 0 and 1. (In fact, frosrdesfinition, the outputs can never quite reach 0 or 1.)

9(x) a(x)
1 — 1

—
8 "’{

0

Step function Sigmoid function
(threshold at zero)

This functioncan be differentiated. Its partial derivative with respecrctogi, also writteng’, is as follows:

T

g'(x) = g(z) x (1 - g(x))

The back-prop learning algorithm is basically the same asatborithm for a single TLU. But there’s a problem
that we have to solve. Itis called tibame assignment problem (or, in some circumstances, teedit assignment
problem). In our case, we need to decide by how much each existinghvisigo blame for any error, and divvy-up
the adjustment among those weights proportionately.

Why is this a problem (especially given that it wasn't a pesblin TLU learning)? Updating weights between the

hidden layer and the output layer is simple enough. We caity&msnpute the error between the actual net outputs
and the target outputs, and we can divide this up among thghteei But how do we know the error at the hidden

layer? In other words, we know what the hidden udiigroduce; but how do we know what the hidden uoitght

to produce. Without knowing their target outputs, we domow their error, and so we can't share it out.

The back-prop algorithm solves this problem. It relies owitgthe nice uniform architecture of a fully connected,
layered, feedforward network. (There are variants of thekkmop algorithm that can be used for networks that are
not fully-connected and/or layered. There are alterndé@eening algorithms and even, for some cases, variants of
back-prop that can be used for recurrent networks.)

As you might guess from its name, this algorithm propagates eack through the layers of the network. So first it
computes the error at the output units, and adjusts the teegghthe lines entering those output units. Themthe
basis of those adjustments, it can compute error at the hidden units and adjust the w®igh the lines entering the
hidden units.

For simplicity, we’ll be sticking to two-layer networks. Bin general, the error will be propagated back, layer by
layer, through the whole network.

The neat thing about back-prop is that a unit's weights viirege in a way that can be calculated using only informa-
tion that is local to that unit.

2 Back-Propagation

Suppose we're presenting some training example to the metWhe example comprises an input vectofthe vector

of incoming values) and the target output vectayget (the values we'd like to see appearing on the output lines
of the units in the output layer). We activate the networlnas, and we observe thactual output values from the
output unitsputput.

Let’s look at one of these output units,. Its input activation is the weighted sum of the outputs otle hidden
units, and we’'ll call this ip, . Its actual output ig(in,,) and we'll call thisoutput,,, . Its target output isarget,, .
The error at this output node is, of course:

El‘l‘nk =def targe[,k - outpu{,k

This output node receives weighted input from the hiddetsuiBuppose there are hidden unitshq, ..., hm). A
given hidden unith;, has an output of outpyt, which it feeds into each of the output units, including The weight
on the line betweenh; andoy, will be denoted bywy,; o, -

This weight needs adjusting in the light of the error comguatieove. The amount it should be adjusted by is
Ao, =def 9 (ino,) x EIly,
The derivation of this is beyond the scope of this coursesbnte explanation is given at the end of these notes.
The formula for making the adjustment is then:
Why 0y, = Wh; 0, +Q X outpugy x Ao,
As before « is the learning rate.
The above update rule is used to update all the weights batalkehe hidden units and all the output units.

Next, we must update the weights between the input unitstentitden units.

For this, we need to compute the error in the outputs of thddridunits. (This is the back-propagation!) Consider a
particular hidden unik;. The idea is thak; is responsible for a fraction of the sum of thg, for each of the output
nodes(oy, ..., o0k, ...,0.). Specifically,

k=l
A, =det g (inn,) X > wh; 0, D0,
k=1

(Again, the derivation of this is beyond the scope of thisrsey

The formula for making weight adjustments is then much aereef
W, by = Ws; hy + X 85 X Ap,

We use this update rule to update all the weights betweehalhput units and all the hidden units.

This is summarised in pseudocode below.

Algorithm: TRAIN (network, dataset)
initialise all TLUs with random weights
do
{ for each examplee € dataset

{ UPDATE(network, ¢);

}

while network hasn’t converged

Algorithm: UPDATE(network, €)

inputVector := e's input vector
target := e's output vector
output := ACTIVATE (network, inputVector);
for each of network’s output unitso,
{ Err,, := target, — output,, ;
Ao, =g (ing,) X Errg,;
sumOfDeltas;, = 0;
for each of network’s hidden unitsh;
{ Wny00 7= Why 0, +axoutput, X Ag,;
sumOfDeltas;, = sumOfDeltas;, + wh, 0, X Noy;

for each of network's hidden unitsh;

{ Ap, =g (ing,) x sumOfDeltas;, ;
for each of network’s input unitss;
{ Wy hy = Ws, by + X 8i X Ap;

}

3 Example

| used the algorithm to learn a net to compute exclusive-be drchitecture of the net (excluding extra units in place
of thresholds) was: two input units, three hidden units amel @utput unit.

Four examples were presented to the net (see below). | ussatrarg rate of 0.35. | trained the net until its total
error on the training examples was no greater than 0.1. Thebauof epochs required to achieve this was surprisingly

high. Obviously, exactly what happens in any particularefse algorithm depends on the initial randomly-chosen
weights. But it seems that between 2500 and 5000 epochs ededie

The diagram shows what happened on one occasion when | rafgivéthm. The first diagram shows the random
weights. The second diagram shows the weights after tigui®m this occasion, training required 3378 epochs.

ho =1 sO,h1=-0.14 h0,01=-0.17

s1,h1=-042 hl,01=-0.24

s2,h1=-0.13 h2,01=0.23

sO = s0,h2 = -0.09 h3,01 = -0.39
s1,h2 =0.47
s2,h2 =-0.07
st s0.h3 = -0.07
s1,h3=0.47
s Before s3h3=-0.04

s0,h1 =-0.82 h0,01 =-1.51
s1,h1=0.12 hl,01 =-3.54
s2,h1 =2.63 h2,01=7.4

s0,h2 =-2.17 h3,01 =-5.82

s1,h2 =5.47
s2,h2 =-3.54
s0,h3 =-3.64
s1,h3=3.3

s2,h3=1.76

The table shows the actual outputs of the net after it has traired.

example input| target output| actual output

aT,0) 0.1 0.13
(1,0) 0.9 0.88
(0,1) 0.9 0.87
(0,0) 0.1 0.12

Question. Why did | use target outputs of 0.1 instead of 0 and 0.9 instead of 1?

By the way, | got equally good results with a net that had onlyns in its hidden layer. | also tried a net with only
one hidden unit but | had to terminate the program — presuyrigibdas not able to converge.

4 Gradient Descent Search

Where do the update rules come from? What's going on in thk-peap algorithm?

The idea of this algorithm is to minimise the total error. &t when deriving the update rules, we don’t use the sum
of the errors, we use the sum of the square of the errors. Wiegalke some of our errors are positive numbers and
others are negative numbers, and if we simply summed theme s@uld cancel out others, giving an underestimate
of the total error. If we square them first, all numbers ineolin the sum are positive. (And summing the squares
makes the maths more convenient than summing the absofigedies.)

Imagine that, for each possible combination of weights, wald compute the total error and that we plotted these
values on a graph. That's hard to visualise in general becaiuthere aren weights in the net, we need(a + 1)-
dimensional graph. So, to help visualisation, in the Iefitrdh diagram below, we pretend that our net has only one
weight in it, and we plot the different error values for diffet weight values. (The right-hand diagram attempts a
3-dimensional effort where error is plotted against twdedént weights.)

Err

Error

wl

If we are presently at some point on this line, then we wanhtinge the weight in such a way as to reduce the error.
The gradient of the line with respect to the weight shows Huosverror would change if we made a small change to
that weight.

(In general, where we consider more than one weight, if weoegsently at some point in thisdimensional space,
the gradient of the error surface with respect to each weigbtvs how the error would change if we changed that
weight. And this is given by the partial derivative of thearfunction with respect to that weight.)

Each weight is changed by an amount proportional to the shifferespect to that weight and in such a way as to
cause the error to decrease. This has the effect of movirgrtbein the direction of the steepest descent. Hence, we
say that this learning algorithm carries @uadient descent search in the space of weights.

So, the sum of the squares of the errors is given by:

k=t
Err =gef »_(target, — outpup,)?
P

We then derive (by differentiation) the change in the errihwespect to a weight between the hidden layer and the
output layer. This is what we get:
oErr

(5th,0,(

= —outpuf, x A,,

We then derive the change in the error with respect to a wéigtteen the input layer and the hidden layer. This is
what we get:
OErr

57.05“}1]

= —8; X A’L:

These are the quantities we use in the update rules.

(A technicality is that we are doingochastic gradient descent search because we update the weights after each
example, rather than finding the total error over all examplehe dataset. This technicality need not concern us in
this module.)

