
Multilayer Neural Networks

1 Fully connected, layered, feedforward networks

Networks of TLUs can encode more functions than can single TLUs.

A single TLU cannot encode the exclusive-or function. But two TLUs connected together, the output of the first
feeding into the second, can do this.
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What functions can neural nets compute in general? The answer is: if we place no restrictions on the network architec-
ture, we can representany function. In particular, if we allowfeedback (where the output of one TLU is fed into that
of an ‘earlier’ TLU), then ANNs have full computational power: they can compute all Turing-computable functions.

The full power is often not needed and it’s not always desirable. It can be better to place some restrictions on the
network architecture. (It can simplify the learning algorithms, for example.)

We will look at fully connected, layered, feedforward networks (for which there’s a reasonably good learning algo-
rithm). Here is an example of such a network:
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• Feedfoward versusrecurrent networks

– In feedforward networks, links are unidirectional and there are no cycles. (Technically, they’re DAGs.)

– Recurrent networks have arbitrary topology. In particular, feedback loops are allowed.

• Layered feedforward networks

– The units are arranged in a number of layers. A unit will send activation only to units in the next layer.

– On the left, we see theinput units/input layer. These units simply pass activation from the environment to
the next layer.

– On the right, we see theoutput units/output layer. The activation that these produce is taken as the output
of the network.

– In between are thehidden units, arranged inhidden layers.

– The example is a two-layer network. The input layer isn’t counted. (However, some people do not know
this convention, and they would call this a three-layer network.)

• Fully connected, layered, feedforward networks

– Each unit in a layer is connected to every unit in the next layer.

Our description henceforth will be kept simpler by assumingthere is only one hidden layer. In general, there could be
several.

Here, by way of an example is a fully-connected, layered, feedforward network for computing exclusive-or:
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Note that now that we have multiple output units, we can handle classification tasks in which there are more than two
classes. If there are two clases,|L| = 2, we need only one output unit. if there are|L| > 2 classes, then we would use
|L| output units.

2 Training a Neural Network

How on earth would someone come up with an ANN? Consider all the decisions they have to make: the number of
layers; the number of units in each layer; and the weights. (If we assume we’ve used the trick from the previous
lecture, then we don’t need to come up with thresholds.)
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Quite simply, ‘programming’ these networks is in general impossible. However, there is an alternative: learning. We
can present to an ANN a set of examples of function inputs and outputs (in our case, already-classified instances) and
get it to learn the weights so that the ANN implements the function (or, at least, one quite close to it).

We will still have to decide on the number of hidden layers andthe number of units in each layer (the ‘architecture’
or ‘topology’ of the network). And this remains something ofan ‘art’. But the automatic learning algorithm can take
care of the weights. We can start with an ANN in which there is arandom assignment of weights (usually in the range
[−0.5, 0.5]), and then put the network through a period of training during which the weights will be adjusted.

During the training phase, we will present to the learning algorithm a set of example input vectors and their corre-
sponding correct output vectors (i.e. the outputs we want the ANN to produce for these inputs). The learning algorithm
adjusts the weights in the ANN in those cases when the ANN isn’t currently producing the correct target output.

We follow common practice by first presenting a learning algorithm for a single TLU. Then we explain how to extend
the ideas to apply to a fully connected, layered, feedforward ANN.

3 Training a TLU

As usual, we need a dataset of examples: each example consists of an input vector and the corresponding target output
(which, since we have reverted to dealing with TLUs, is simply 0 or 1). The essence of the learning is this:

• If the actual TLU output is 1 when it should be 0, make eachwi smaller by an amount proportional tosi.

• If the actual TLU output is 0 when it should be 1, make eachwi larger by a similar amount.

We must present the dataset of examples to the learning algorithm several times, each time being referred to as an
epoch.

Class exercise.Why?

How many epochs are needed? Well, you can stop the algorithm when the TLUconverges: it correctly predicts all
the examples (or most of them) and the weights are not being changed any more. Alternatively, we might use a fixed
number of epochs, or we might set a time limit on the learning.

How do we update the weights? First, we compute the error:

Err =def target− output

Given that target and output can only be 0 or 1, the error can only be 0, 1 or -1. Second, we update each weight:

wi := wi + α × si × Err

α is a constant called thelearning rate and will be a real value,0 < α ≤ 1. (A typical value is around 0.35.)

By way of an example, imagine we’re trying to train a TLU to computes1∧s2. Suppose the random weights assigned
at the start of the algorithm are as shown in the left-hand diagram below. Suppose one example is as follows. The
example inputs are〈1, 1〉. The target output is, of course, 1. The actual output from the TLU shown is 0. (Why?
Because1 × 0.3 + 1 × 0.1 + 1 ×−0.5 = −0.1 and−0.1 < 0.)

So, the error is1 − 0 = 1. If we use a learning rate of 0.35, then we update the weights as follows:

ws0
:= 0.3 + 0.35 ∗ 1 ∗ 1 = 0.65

ws1
:= 0.1 + 0.35 ∗ 1 ∗ 1 = 0.45

ws2
:= −0.5 + 0.35 ∗ 1 ∗ 1 = −0.15

After this one example, the TLU is now as per the right-hand diagram.
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We then go on to other examples from the training set and, oncethese are exhausted, we go through the examples all
over again for the second epoch.

By way of summary, here’s the training procedure in pseudocode:

Algorithm: TRAIN(TLU, dataset)

initialiseTLU with random weights;
do
{ for eachexamplee ∈ dataset

{ UPDATE(TLU, e);
}

}
while TLU hasn’t converged

Algorithm: UPDATE(TLU, e)

inputVector := e’s input vector;
targetOutput := e’s output;
actualOutput := ACTIVATE(TLU, inputVector);
err := targetOutput − actualOutput;
for eachof TLU’s weightswi

{ wi := wi + α × si × err;
}

4 What Can a TLU Learn?

We saw that we can design TLUs to compute only certain functions. There’s obviously no point trying to get a TLU
to learn exclusive-or (⊕) or other functions that it cannot compute. But what is the relationship between the set of
functions a TLU can compute and the set we can get it to learn?

Whatever functions a TLU can compute, it can learn to compute.

Of course, for it to learn a specific function requires that itbe given a representative enough set of examples. It also
requires that the learning rate,α, not be too large, otherwise a suitable set of weights can be ‘overshot’ (But ifα is too
small, learning can be very slow.)

How can we detect whether the TLU that we’ve been training hasactually learned the function that we want it to?
In the case of TLUs, we might just be able to do it by inspectingthe weights. But, in general, following the training
phase, we subject the TLU to a testing phase to find out what it has learned, as discussed in a previous lecture.
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