
Neural Networks

We’re now going to look at another way of building classifiers: (artificial) neural networks (ANNs).

The brain comprises around1011 neurons, connected into a complex network. ANNs similarly comprise numerous
simple computational devices (here calledThreshold Logic Units or TLUs), connected into complex networks.

Among the advantages of neural networks are: they are very good at handling numerical inputs; and they can be
trained: they can learn functions from examples. They have been successful in learning to recognise handwritten
characters, spoken words and human faces. Their advantagesmake them useful for a wide variety of other tasks, in
addition to classification.
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Sufficient electrical activity on a neuron’s dendrites causes an electrical pulse to be sent down the axon, where it may
activate other neurons.

Before looking at ANNs in general, we look at TLUs, which are computational units inspired by neurons.
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2 Threshold Logic Units (TLUs)

A threshold logic unit (TLU) takes in some numerical inputs, computes a weighted sum of the inputs, compares the
sum to a threshold value (θ), and outputs a 1 if the threshold is equalled or exceeded; otherwise, it outputs a 0.
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where, for the moment,

g(x) =def

{

1 if x ≥ θ

0 otherwise

The inputss = 〈s1, . . . , sn〉 and weightsw = 〈w1, . . . , wn〉 are typically real values (positive or negative).in is a
weighted sum of these inputs.g is called theactivation function: it decides whether the weighted sum of the inputs is
big enough for there to be an output value of 1.

As well as having the flexibility of handling real-number inputs, if we allow inputs of only 0 (false) or 1 (true), TLUs
can simulate many Boolean operators and expressions. Here are TLUs that computes1 ∧ s2 and¬s1:
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(Note that these are not the only weights and thresholds thatcould be used to simulate these operations.)

Here’s a TLU that computes a more complex Boolean expressions1 ∧ ¬s2 ∧ s3
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3 What can TLUs represent?

We’ve seen a few example of functions that a single TLU can encode. But there are limitations on what functions
TLUs can encode. They cannot even encode all Boolean operators.

For example, exclusive-or (⊕) cannot be computed by a single TLU.

s1 s2 output
0 0 0
0 1 1
1 0 1
1 1 0

We would need weightsw1 andw2 and thresholdθ such that

w1 × 0 + w2 × 0 < θ

w1 × 0 + w2 × 1 ≥ θ

w1 × 1 + w2 × 0 ≥ θ

w1 × 1 + w2 × 1 < θ

There are no such weights and threshold.

A TLU can only encodelinearly separable functions. Exclusive-or is not a linearly separable function. We can see
what this means from these graphs:
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We have two inputs, which can be 0 or 1, drawn on the axes. Blackdots indicate points in the input space where the
output should be 1. But a TLU outputs 1 iff some threshold is exceeded, so this space is divided into two (those points
where the weighted sum is above the threshold and those points where it isn’t). So, in the cases where we can draw a
straight line that separates the white dots from the black dots, we can use a TLU.

Class Exercise.Give another Boolean operator that is not linearly separable.

In general, where we have more than 2-dimensions (more than 2inputs), the input space is divided into two by a
hyperplane rather than by a straight line. But this doesn’t change the fundamental point that we can only represent
functions where such a dividing plane does exist (linearly separable functions).

Unfortunately, there are not many linearly separable functions. So single TLUs may not be of much use to us. As
we’ll see,networks of TLUs can overcome these limitations.
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4 TLUs for Classification

You might already be objecting to the use of TLUs for implementing classifiers. Apart from the limitation to linearly
separable functions, there seem to be two other limitations:

Only two classes? The output of a single TLU is either 0 or 1. So a single TLU is only capable of choosing between
two classes. While two classes is very common (spam/ham, employee/visitor, etc.), there are applications where we
will have more than two classes (beginner/intermediate/advanced).

This is a problem we can overcome by using several TLUs. We’llpostpone further discussion of use of more than one
TLU to the next lecture.

Only numeric inputs? The inputs to TLUs (s1, . . . , sn) are numbers. How can we handle attributes whose types
aren’t numbers?

We’ve already seen how to handle Boolean-valued inputs: simply use 1 for true and 0 for false.

What about symbolic-valued attributes? If there are only two values (as withsex), then we can use 0 and 1 again.

If there are more than two values (e.g.none, snack, full), we use more than one binary input. The simplest approach
is to use one binary input per value. For example, to handle the three values of themeal attribute, we would use three
inputss1, s2 ands3. To input an instance whose value for this attribute isnone, s1 = 1, s2 = 0, s3 = 0. For snack,
s1 = 0, s2 = 1, s3 = 0. For full, s1 = 0, s2 = 0, s3 = 1. If there arek values, this scheme requiresk inputs.

You will appreciate, however, that, were we to encode the values as consecutive binary numbers, only⌈log2 k⌉ would
actually be needed. For example, for three values, two inputs gives four distinct bit patterns (one of which would never
be used), whereas using three inputs as proposed above, gives eight distinct bit patterns (five of which would never be
used). Although our scheme is not economical, it probably makes it easier to find weights.

5 A Simplification

This simplification makes the implementation simpler. But its real motivation is that it makes the learning algorithm
that is coming up later simpler.

Suppose we have a TLU whose threshold isθ. The simplification is to construct a new but equivalent TLU whose
thresholdθ′ is fixed at zero. But then we add an extra input line,s0, to the new TLU. The input value on this line will
be fixed at 1, and the weight on this line will be fixed at−θ.
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These give equivalent results.

4



Exercises

1. Design TLUs for

(a) s1 ∨ s2 and

(b) s1 ⇒ s2.

2. A literal is any Boolean variable (such ass1 in the above examples) or its negation (e.g.¬s1). A TLU can
compute the value of any conjunction of literals, e.g.s1 ∧ ¬s2 ∧ s3 (as earlier), or¬s1 ∧ ¬s2 ∧ s3 ∧ s4, or
s1 ∧ s2 ∧ s3 ∧ s4 ∧ s5, etc.

In general, what weights and threshold would you need if you were designing a TLU for some conjunction of
literals? (Hint: See if you can come up with the answer by generalising from the TLU that appeared earlier in
the notes for computings1 ∧ ¬s2 ∧ s3.)

3. Similarly, TLUs can compute the value of any disjunction of literals (i.e. using∨). In general, what weights and
thresholds would you need?

4. Design a TLU that computes a majority function. In other words, it outputs 1 only if half or more than half of
its n inputs are 1.

5. Similarly design a TLU that computes a minority function:it outputs 1 only if half or fewer than half of its
inputs are 1.
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