Rule-Based Classifiers

1 Propositional Logic

In Propositional Logic, we're interested in analysstgtementabout the world, and these statements will be either T
(true) or F (false). (This is a major simplifying assumptioade in Propositional Logic: it excludes the possibility of

statements that are, e.g., only partly true. To handleypauik statements, you have to abandon Propositional Logic

and turn to one of the many other varieties of logic, e.g. Fuzmyic — covered later in this module.)
For conciseness, we do not use English to write atomic setesuch as ‘There is an obstacle in front of the robot'.

Instead, we give atomic statements short names sughpasp, - . ., 4, qo, q1, - - - We refer to these gsropositional
symbols

We can construct compound statements from simpler statsrbgrcombining propositional symbols into larger ex-
pressions using operators that we ¢alth-functional connectives
Syntax. We define thevell-formed formulagwffs) of propositional logic as follows:

1. true and false are wffs.

2. Every propositional symbol is a wif.

3. For any wffsiV, W, andW5, the following are also wffs:

()
-W negation
Wi AW, conjunction;W; andWs are the conjuncts
W1 Vv W, disjunction;WW; andW, are the disjuncts
W, = W, conditional;W; is the antecedenly, is the consequent
W, < W, biconditional

4. No other string of symbols is a wff.

Semantics. Wffs may be T or F.

1. The wffs true and false are always T and F, respectively.

2. The truth-value of a propositional symbol will be stipeld A stipulation of truth-values for propositional
symbols is called armnterpretation and is writtenZ, e.g.Z(p) = true. Often, we'll consider all possible
interpretations, shown astauth-table

3

. The truth-values of a compound wff can be determined fiwertriuth-values of its component wffs.
Here are all 16 possible logic functions of two wffs:

o B = £ o £ £
= = - s e = - - =
o > ¥ f t < =2 & . -V - g
E B2 E EEEREEEEETETEETSS
T T|yT T T T T T T T F F F F F F F F
T F|T T T T F F F F T T T T F F F F
F T|VT T F F T T F F T T F F T T F F
F F/T F T F T F T F T F T F T F T F
1

For completeness, the table includes all 16 possible lagictfons of two variables. However, we continue to
focus on—, A, V, = and<.

Meta-theory. Inspection of a truth-table allows us to say things aboutfaoiybropositional logic:

« A wffis satisfiablgffitis T in atleast one interpretatio(at least one row in the truth-table).

« A wffis unsatisfiableff it is T in no interpretation(no row).

A wffis validiffitis T in every interpretatiorfevery row).

« Two wifs, W, andW5, arelogically equivalentwritten W, = W5, iff they are T in exactly the same interpreta-
tions (exactly the same rows).

A set of wffs ® has wff IV as alogical consequencgavritten ® |= W, iff in every interpretation in which all
members ofb are T thenlV is also T. (In every row where all the membersioére T,V is also T.)

The last of these is particularly important because it isthss of logical reasoning. So we will give an example.
Let

p =def Itisraining
q =def |getwet
r =qef |catchcold

You are given the following premisses:

1. Ifit's raining, | get wet:p = ¢
2. If I getwet, | catch coldy = r

3. ltisraining:p

Show | catch cold.
What we want to show is

p=aqa=>rptEq
We can draw up a truth-table and then check that the defirifitwgical consequence holds.

premisses conclusion
p g9 r|p=qg g=r p q
T T T T T T T
T T F T F T T
T F T F T T F
T F F F T T F
F T T T T F T
F T F T F F T
F T T T T F F
F T F T T F F

In every interpretation in which all the premisses are tineh(s case, just row 1), the conclusion is also true.

Proof Theory. A proof theory enables us to derive conclusions from a setfts by syntactic operationslone.
We manipulate the wffs without reference to their semantitthe manipulation rules are ‘right’, the new wffs we
generate will, in fact, also be exactly the logical consemes of the original set of wifs.

A proof theory comprises a finite set ofference rulegand a finite set ofogical axiom schematavhich we will
ignore here). An inference rule comprises a set of pattatedconditionsand another pattern called thenclusion
Here are the only rules we will use in this lecture. The fir#riswn as=--elimination and also as Modus Ponens:

Wy, Wy = Ws
Ws
The second is known as-introduction:
VV] N VVQ
Wi A Wy
Above the line are the conditions; below is the conclusiéyol have wffs that match the conditions, then you can,
in a single step, derive a wff that matches the conclusion.

Given a set of inference rules and a set of premisBesie can try taderivea wif W from ® by repeated applications
of the inference rules. If there exists a derivatioVfirom ® then we say thalV’ is derivablefrom ®, and we write
this as:

oW

We can illustrate this idea, using the same example fromebov
1. p = ¢ (premiss: Ifit's raining, | get wet)
2. ¢ = r (premiss: If | get wet, | catch cold)
3. p (premiss: Itis raining)
4. q (=-elimination using (1) and (3))

5. r (=-elimination using (2) and (4))

2 Propositional Definite Clauses

In the rest of the lecture we will be using a restricted fornprfpositional logic. This logic is less expressive that ful
propositional logic, but still very useful and thereforedefy-used.

Syntax. All wffs must bepropositional definite clauses

1. Every propositional symbol is a propositional definiteuse. These simple propositional definite clauses are
informally referred to agacts

2. If p1,...,pn andq are propositional symbols, then
(P A Apn) =q

is a propositional definite clause. These propositionahdeftlauses are informally referred torates

Class exerciseYou can see that one of the restrictions is that we are ondyvalll conjunction in the antecedents of
rules. For example, the following is not a propositional wiédi clause:

(71 Vp2)=q

Why is it no great loss that antecedents cannot be disjums?io

3 Classification using Rules

A rule-based classifier will comprise a knowledge base tlatains facts and rules and an inference engine for
drawing conclusions from the knowledge base.

3.1 Knowledge Base

A rule-based classifier will have knowledge baséhat contains propositional definite clauses (i.e. facts raes)
about the subject at hand. Suppose we were building a medieabased classifier for deciding whether a patient
should be admitted into hospital or not. The rules would elecassociations between symptoms and medical condi-
tions. The facts would encode knowledge about the currdigmnia

We'll see how to use a knowledge base of propositional defoi&tuses to perform a classification task. To begin with,
we'll assume there are only two classes. The rules will deitee whether an object belongs to one of the two classes.
If it cannot be proved that an object belongs to that classasseme it belongs to the other class.

We'll give an example knowledge base for deciding whethegrémt a loan to an individual For readability, it doesn’t
usesp’s andg’s! It uses the following propositional symbols:

ok =def theloan should be approved
collat =gef the collateral for the loan is satisfactory
pymt =gef the applicantis able to make the loan repayments

rep =def the applicant has a good financial reputation

app =def the appraisal on the collateral is sufficiently greater ttgnioan amount
rating =gef the applicant has a good credit rating

ref =def the applicant has a good reference from a financial instituti

sal =def the applicant has a good, steady income

pen =def the applicant has a high pension

bal =def the applicant has an excellent balance sheet

Here are the rules:

(collat A pymtA rep) = ok
(bal A rep) = ok

app=- collat

(rating A ref) = rep

sal = pymt

pen= pymt

Notice how the rules chain together: the consequent of olgemay appear in the antecedent of another. We can
depict this chaining graphically as an AND-OR graph.

ok
N
collat pymt rep bal
A4
app sal pen
rating ref

1 This is a minor extension of the knowledge base given in Nilgsbin: Artificial Intelligence: A New Synthesiblorgan Kaufmann, 1998.

In the graph, there are two types of node:

AND-nodes: Incoming links are joined by an arc. This indicates conjiorct—every link must be proved.

OR-nodes: If there are multiple incoming links, they are not joined yaac. This indicates disjunction —one of the
links must be proved.

3.2 The Inference Engine

The inference engine will draw conclusions using the kndgéein the knowledge base. The work done by the
inference engine of a rule-based system is referred talasbased reasonin(RBR). From a logic point of view, it
derives wffs using the two inference rules mentioned eadie-elimination anda-introduction).

Another perspective on rule-based reasoning is that it iisgda search of the AND-OR graph. Effectively, we are
looking for an AND-OR tree within the AND-OR graph. The treeshconnect the root of the graph with some of the
leaves of the graph, as follows:

« If anode is an OR-node, it is sufficient for the AND-OR treertclude only one of the node’s descendants.

« If anode is an AND-node, it is necessary for the AND-OR temtlude each of the node’s descendants.

« If anode is a leaf, the node must represent a fact that iikitiowledge base.

The inference engine searches for this AND-OR tree usitgeforwards-chaining or backwards-chaining (or both).

3.2.1 Forwards-chaining

The first method we will look at goes by the namédafvards-chainingalthough it is also calledottom-up reasoning
anddata-driven reasoning

In terms of the AND-OR graph, this kind of reasoning startthase leaves that match facts in the knowledge base
and tries to build a tree from those leaves to the root of thelyr

Here is a simple (not necessarily very efficient) algorittemfbrwards-chaining. To invoke the algorithm, you supply
it with a list of goals. This list should include just the syahlat the root of the AND-OR graph. (Clearly then, it does
not need to be &st: it includes only one symbol. Having it as a list gives cotesisy with the algorithm given in
section 3.2.2 and is exploited in section 3.3.1.)

Algorithm: FORWARDSCHAINING (GoalLisf)

do
{ new:={};
for eachrule (p1A, ..., Apn) = ¢ € KB
{ i {preee.pn} CKB
{ ifggnewAq¢KB
{ insertg into new
if ¢ is a member oGoallList
{ return trueg

}
}

copy the members afewinto KB;

while new# 0);
return false

KB is the knowledge base.

Let's assume that four facts are inserted into the loans ledye base:

sal
rating

ref

app

i.e. the current applicant has a good salary, a good créifigra good reference. and the appraisal on the collateral i
sufficiently high. Does s/he get a loan?

In the lecture, we will trace the operation of the algoritite will invoke FORWARDSCHAINING ([0K)) to see whether
this applicant gets a loan. From this you should understamdptrases such as forwards-chaining, bottom-up rea-
soning and data-driven reasoning are used.

3.2.2 Backwards-chaining

The second method we look at goes by the nabakwards-chainingop-down reasoninggoal-driven reasoning
andhypothesis-driven reasoning

In terms of the AND-OR graph, this kind of reasoning startthatroot of the graph and tries to build a tree from the
root to leaves that match facts in the knowledge base.

Here is a simple (not necessarily very efficient) algoritiomdfackwards-chaining. To invoke the algorithm, you supply
it with a list of goals. Initially, this list should includeugt the symbol at the root of the AND-OR graph. However,
the algorithm is recursive. The propositions needed tdbéstathe original goal become a list of subgoals, which
replace the original goal, and this list is fed into a reateshvocation of the algorithm. Each of these subgoals will
be replaced in turn by their own subgoals, and so forth. Iftyeal matches a fact, then it can be removed from the
list of (sub)goals. If the list of (sub)goals becomes emibtyn we have succeeded in establishing the original goal.

Algorithm: BACKWARDSCHAINING (GoalList)

if GoalListis empty
{ return true

currentGoal:= head ofGoallList
for eachclausec € KB
{ if cisafactand: = currentGoal
{ newGoalList= tail of GoalList
if BACKWARDSCHAINING (newGoalLisf
{ return true

}

else ifcis a rule of the form(p, A ... A p,) = ¢ andg = currentGoal
{ newGoallist= py,...,p, and tail ofGoalList

if BACKWARDSCHAINING (newGoalLisf

{ return true

}
}

return false

In the lecture, we’'ll trace the operation of the algorithningghe loan knowledge base, including the four facts given
above. Again we will invoke BCKWARDSCHAINING ([oK]). From this you should understand why phrases such as
backwards-chaining, top-down reasoning, goal-drivesgeing and hypothesis-driven reasoning are used.

Class Exercise Suppose the knowledge base contains a rule of the fosmp or a chain of rules with a similar effect.
Does such a rule cause a problem for (a) this backwards-adlgatgorithm; (b) for the forwards-chaining algorithm?

3.3 Discussion
3.3.1 More than two classes
A rule-base can contains rules that establish membershigpmiany classes as you wish. For example, here is a simple

animal identification rule-base, which can classify ansras giraffes, zebras or elephants. Note that the AND-OR
graph has more than one root.

giraffe zebra elephant
— ~—
longNeck ung#lale striped tusk:
suckles= mammal mammal chewsCud
hairy = mammal
(mammal chewsCull=- ungulate & o hairy

(ungulaten longNeck = giraffe
(ungulateA striped = zebra
(ungulaten tuskg = elephant

The forwards-chaining algorithm easily accommodatesgkésnple. We invoke it with a list of the classes as its goals,
FORWARDSCHAINING ([giraffe, zebra elephani). It terminates as soon as any one of these gets establisitbdjea
can check to see which one was established.

The easiest way to use the backwards-chaining algorithminsoke it repeatedly. First invokeA8@KWARDSCHAINING ([giraffe]);

ifit returns true, then you can conclude the animal is a fgrdf it return false, then invoke BCKWARDSCHAINING ([zebrd);

ifit returns true, then you can conclude the animal is a zdbitareturns false, finally invoke BCKWARDSCHAINING ([elephant);

if it returns true, then the animal is an elephant. If it retufalse, this animal could not be classified using thessrule

3.3.2 Syntactic variations

You can use attribute-value pairs in places where we usqzbpitional symbols, e.g.:
(legs= 4 A tusks= 2 A hairy = yeg = class= elephant

This might look better, but it adds no real expressive power.

There are, of course, other variations whwbuld add expressive power. Some of them might even take us beyond
propositional logic into predicate logic. We could not tfexpect our forwards- and backwards-chaining algorithms
to work without modification.

3.3.3 Extralogical variations

Once you move to attribute-value pairs, you might be temmieadlow relations other than equality, especially in the
antecedents of the rules, e.g.:
sal > 30000 = pymt

Suppose one of the facts about the current loan applicaalis- 32000, then you will presumably intend that the
system can derivpymt This is going beyond what--elimination can do for youl=--elimination requires an exact
match.

To see that the rule’s antecedesd) > 30000, and this factsal = 32000, do ‘match’ requires you to ‘step outside’
of logic and exploit the arithmetic facilities of your manki Your system will no longer be purely logical; it uses
someextralogicalfacilities (where ‘extra-logical’ means ‘outside of logic This might be very convenient in your
task domain, and there’s nothing to stop you from buildingstesm that works in this way.

3.3.4 Interactive systems

Rule-based systems have been successfully used in practitéor tasks other than classification too. In practiogy th
are most usually interactive systems. This means thatewVsl will assume that all thelleswe need are already in
the knowledge base, we do not assume that alfabesare known and stored already in the knowledge base. Instead,
the user will supply the facts interactively during the s@ss

In forwards-chaining systems, the user is asked to supphedacts. The system then does as much forwards-chaining
using these as it can. If the desired conclusion has not beteblished, then the user might be prompted for more
facts, and another round of forwards-chaining begins.

In backwards-chaining systems, when the system is tryisgéowhether a leaf node (fact) is true or not, it will check
the knowledge base but, if it is not in the knowledge base theill ask the user a question to determine whether the
fact is true or false. The user’s answer can be added to theledge base.

Some systems work exclusively using one or other of backsvahéining or forwards-chaining. But many interleave
the two. This can be very natural for an interactive systeomsler a consultation with a human doctor. The patient
describes some symptoms. Conclusions are drawn (maybetemthtively) using forwards-chaining. The doctor
selects a hypothesis and, through backwards-chainingesat a question that is addressed to the patient. Thenpatie
speaks again, perhaps answering the question and/or getimg other information. And so the process repeats.

3.3.5 Explanations

It is often important that a system be able to explain itsoaamy. Rule-based systems usually offer two kinds of
explanation, known ashyandhowexplanations.

A whyexplanation is amscentof the AND-OR graph. It shows why it is useful to establishtthaode in the graph
is true: it shows which rules could fire.

A howexplanation is @escenbf the successful parts of the AND-OR graph. It shows how amveas established to
be true: it shows which rules did fire in reaching that concius

3.3.6 Where do the rules come from?

Rules are little nuggets of knowledge. It was originally ugbt that human experts could easily provide us with
knowledge expressed in rule form. On the whole, this hasqatawt to be true. The first handful of rules might be
easily acquired, but it becomes increasingly hard to obstaire rules to improve the coverage of the knowledge base.
Different experts may disagree. Experts may be unable toutate their knowledge. The brake this put onto the
development of expert systems became known akribw/ledge acquisition bottleneck

Increasingly then, rules are learned from datasets. Wnfately, we do not have time to look at the algorithms for
doing this.

