
Rule-Based Classifiers

1 Propositional Logic

In Propositional Logic, we’re interested in analysingstatementsabout the world, and these statements will be either T
(true) or F (false). (This is a major simplifying assumptionmade in Propositional Logic: it excludes the possibility of
statements that are, e.g., only partly true. To handle partly-true statements, you have to abandon Propositional Logic
and turn to one of the many other varieties of logic, e.g. Fuzzy Logic — covered later in this module.)

For conciseness, we do not use English to write atomic statements such as ‘There is an obstacle in front of the robot’.
Instead, we give atomic statements short names such asp, p0, p1, . . . , q, q0, q1, . . . We refer to these aspropositional
symbols.

We can construct compound statements from simpler statements by combining propositional symbols into larger ex-
pressions using operators that we calltruth-functional connectives.

Syntax. We define thewell-formed formulae(wffs) of propositional logic as follows:

1. true and false are wffs.

2. Every propositional symbol is a wff.

3. For any wffsW , W1 andW2, the following are also wffs:

(W )
¬W negation

W1 ∧ W2 conjunction;W1 andW2 are the conjuncts
W1 ∨ W2 disjunction;W1 andW2 are the disjuncts
W1 ⇒ W2 conditional;W1 is the antecedent;W2 is the consequent
W1 ⇔ W2 biconditional

4. No other string of symbols is a wff.

Semantics. Wffs may be T or F.

1. The wffs true and false are always T and F, respectively.

2. The truth-value of a propositional symbol will be stipulated. A stipulation of truth-values for propositional
symbols is called aninterpretation, and is writtenI, e.g.I(p) = true. Often, we’ll consider all possible
interpretations, shown as atruth-table.

3. The truth-values of a compound wff can be determined from the truth-values of its component wffs.

Here are all 16 possible logic functions of two wffs:

W
1

W
2

tr
u

e

W
1
∨

W
2

W
1
⇐

W
2

W
1

W
1
⇒

W
2

W
2

W
1
⇔

W
2

W
1
∧

W
2

W
1
|W

2

W
1
⊕

W
2

¬
W

2

W
1

>
W

2

¬
W

1

W
1

<
W

2

W
1
↓

W
2

fa
ls

e

T T T T T T T T T T F F F F F F F F
T F T T T T F F F F T T T T F F F F
F T T T F F T T F F T T F F T T F F
F F T F T F T F T F T F T F T F T F

1

For completeness, the table includes all 16 possible logic functions of two variables. However, we continue to
focus on¬, ∧, ∨, ⇒ and⇔.

Meta-theory. Inspection of a truth-table allows us to say things about a wff of propositional logic:

• A wff is satisfiableiff it is T in at least one interpretation(at least one row in the truth-table).

• A wff is unsatisfiableiff it is T in no interpretation(no row).

• A wff is valid iff it is T in every interpretation(every row).

• Two wffs, W1 andW2, arelogically equivalent, writtenW1 ≡ W2, iff they are T in exactly the same interpreta-
tions (exactly the same rows).

• A set of wffsΦ has wffW as alogical consequence, written Φ |= W , iff in every interpretation in which all
members ofΦ are T thenW is also T. (In every row where all the members ofΦ are T,W is also T.)

The last of these is particularly important because it is thebasis of logical reasoning. So we will give an example.

Let

p =def It is raining

q =def I get wet

r =def I catch cold

You are given the following premisses:

1. If it’s raining, I get wet:p ⇒ q

2. If I get wet, I catch cold:q ⇒ r

3. It is raining:p

Show I catch cold.

What we want to show is
{p ⇒ q, q ⇒ r, p} |= q

We can draw up a truth-table and then check that the definitionof logical consequence holds.

premisses conclusion
p q r p ⇒ q q ⇒ r p q

T T T T T T T
T T F T F T T
T F T F T T F
T F F F T T F
F T T T T F T
F T F T F F T
F T T T T F F
F T F T T F F

In every interpretation in which all the premisses are true (in this case, just row 1), the conclusion is also true.

2



Proof Theory. A proof theory enables us to derive conclusions from a set of wffs by syntactic operationsalone.
We manipulate the wffs without reference to their semantics. If the manipulation rules are ‘right’, the new wffs we
generate will, in fact, also be exactly the logical consequences of the original set of wffs.

A proof theory comprises a finite set ofinference rules(and a finite set oflogical axiom schemata, which we will
ignore here). An inference rule comprises a set of patterns calledconditionsand another pattern called theconclusion.
Here are the only rules we will use in this lecture. The first isknown as⇒-elimination and also as Modus Ponens:

W1, W1 ⇒ W2

W2

The second is known as∧-introduction:
W1, W2

W1 ∧ W2

Above the line are the conditions; below is the conclusion. If you have wffs that match the conditions, then you can,
in a single step, derive a wff that matches the conclusion.

Given a set of inference rules and a set of premisses,Φ, we can try toderivea wff W from Φ by repeated applications
of the inference rules. If there exists a derivation ofW from Φ then we say thatW is derivablefrom Φ, and we write
this as:

Φ ⊢ W

We can illustrate this idea, using the same example from above:

1. p ⇒ q (premiss: If it’s raining, I get wet)

2. q ⇒ r (premiss: If I get wet, I catch cold)

3. p (premiss: It is raining)

4. q (⇒-elimination using (1) and (3))

5. r (⇒-elimination using (2) and (4))

2 Propositional Definite Clauses

In the rest of the lecture we will be using a restricted form ofpropositional logic. This logic is less expressive than full
propositional logic, but still very useful and therefore widely-used.

Syntax. All wffs must bepropositional definite clauses.

1. Every propositional symbol is a propositional definite clause. These simple propositional definite clauses are
informally referred to asfacts.

2. If p1, . . . , pn andq are propositional symbols, then

(p1 ∧ . . . ∧ pn) ⇒ q

is a propositional definite clause. These propositional definite clauses are informally referred to asrules.

Class exercise.You can see that one of the restrictions is that we are only allowed conjunction in the antecedents of
rules. For example, the following is not a propositional definite clause:

(p1 ∨ p2) ⇒ q

Why is it no great loss that antecedents cannot be disjunctions?

3

3 Classification using Rules

A rule-based classifier will comprise a knowledge base that contains facts and rules and an inference engine for
drawing conclusions from the knowledge base.

3.1 Knowledge Base

A rule-based classifier will have aknowledge basethat contains propositional definite clauses (i.e. facts and rules)
about the subject at hand. Suppose we were building a medicalrule-based classifier for deciding whether a patient
should be admitted into hospital or not. The rules would encode associations between symptoms and medical condi-
tions. The facts would encode knowledge about the current patient.

We’ll see how to use a knowledge base of propositional definite clauses to perform a classification task. To begin with,
we’ll assume there are only two classes. The rules will determine whether an object belongs to one of the two classes.
If it cannot be proved that an object belongs to that class, weassume it belongs to the other class.

We’ll give an example knowledge base for deciding whether togrant a loan to an individual.1 For readability, it doesn’t
usesp’s andq’s! It uses the following propositional symbols:

ok =def the loan should be approved
collat =def the collateral for the loan is satisfactory
pymt =def the applicant is able to make the loan repayments
rep =def the applicant has a good financial reputation
app =def the appraisal on the collateral is sufficiently greater thanthe loan amount
rating =def the applicant has a good credit rating
ref =def the applicant has a good reference from a financial institution
sal =def the applicant has a good, steady income
pen =def the applicant has a high pension
bal =def the applicant has an excellent balance sheet

Here are the rules:

(collat∧ pymt∧ rep) ⇒ ok
(bal∧ rep) ⇒ ok
app⇒ collat
(rating∧ ref) ⇒ rep
sal⇒ pymt
pen⇒ pymt

Notice how the rules chain together: the consequent of one rule may appear in the antecedent of another. We can
depict this chaining graphically as an AND-OR graph.

rating ref

app sal pen

balcollat pymt rep

ok

1This is a minor extension of the knowledge base given in N.J. Nilsson:Artificial Intelligence: A New Synthesis, Morgan Kaufmann, 1998.

4



In the graph, there are two types of node:

AND-nodes: Incoming links are joined by an arc. This indicates conjunction —every link must be proved.

OR-nodes: If there are multiple incoming links, they are not joined by an arc. This indicates disjunction —one of the
links must be proved.

3.2 The Inference Engine

The inference engine will draw conclusions using the knowledge in the knowledge base. The work done by the
inference engine of a rule-based system is referred to asrule-based reasoning(RBR). From a logic point of view, it
derives wffs using the two inference rules mentioned earlier (⇒-elimination and∧-introduction).

Another perspective on rule-based reasoning is that it is doing a search of the AND-OR graph. Effectively, we are
looking for an AND-OR tree within the AND-OR graph. The tree must connect the root of the graph with some of the
leaves of the graph, as follows:

• If a node is an OR-node, it is sufficient for the AND-OR tree toinclude only one of the node’s descendants.

• If a node is an AND-node, it is necessary for the AND-OR tree to include each of the node’s descendants.

• If a node is a leaf, the node must represent a fact that is in the knowledge base.

The inference engine searches for this AND-OR tree using either forwards-chaining or backwards-chaining (or both).

3.2.1 Forwards-chaining

The first method we will look at goes by the name offorwards-chaining, although it is also calledbottom-up reasoning
anddata-driven reasoning.

In terms of the AND-OR graph, this kind of reasoning starts atthose leaves that match facts in the knowledge base
and tries to build a tree from those leaves to the root of the graph.

Here is a simple (not necessarily very efficient) algorithm for forwards-chaining. To invoke the algorithm, you supply
it with a list of goals. This list should include just the symbol at the root of the AND-OR graph. (Clearly then, it does
not need to be alist: it includes only one symbol. Having it as a list gives consistency with the algorithm given in
section 3.2.2 and is exploited in section 3.3.1.)

5

Algorithm: FORWARDSCHAINING (GoalList)

do
{ new:= { };

for each rule (p1∧, . . . ,∧pn) ⇒ q ∈ KB
{ if {p1, . . . , pn} ⊆ KB

{ if q 6∈ new∧ q 6∈ KB
{ insertq into new;

if q is a member ofGoalList
{ return true;
}

}
}

}
copy the members ofnewinto KB;

}
while new 6= ∅;
return false;

KB is the knowledge base.

Let’s assume that four facts are inserted into the loans knowledge base:

sal
rating

ref
app

i.e. the current applicant has a good salary, a good credit rating, a good reference. and the appraisal on the collateral is
sufficiently high. Does s/he get a loan?

In the lecture, we will trace the operation of the algorithm.We will invoke FORWARDSCHAINING ([ok]) to see whether
this applicant gets a loan. From this you should understand why phrases such as forwards-chaining, bottom-up rea-
soning and data-driven reasoning are used.

3.2.2 Backwards-chaining

The second method we look at goes by the namesbackwards-chaining, top-down reasoning, goal-driven reasoning
andhypothesis-driven reasoning.

In terms of the AND-OR graph, this kind of reasoning starts atthe root of the graph and tries to build a tree from the
root to leaves that match facts in the knowledge base.

Here is a simple (not necessarily very efficient) algorithm for backwards-chaining. To invoke the algorithm, you supply
it with a list of goals. Initially, this list should include just the symbol at the root of the AND-OR graph. However,
the algorithm is recursive. The propositions needed to establish the original goal become a list of subgoals, which
replace the original goal, and this list is fed into a recursive invocation of the algorithm. Each of these subgoals will
be replaced in turn by their own subgoals, and so forth. If a subgoal matches a fact, then it can be removed from the
list of (sub)goals. If the list of (sub)goals becomes empty,then we have succeeded in establishing the original goal.

6



Algorithm: BACKWARDSCHAINING (GoalList)

if GoalList is empty
{ return true;
}
currentGoal:= head ofGoalList;
for eachclausec ∈ KB
{ if c is a fact andc = currentGoal

{ newGoalList:= tail of GoalList;
if BACKWARDSCHAINING (newGoalList)
{ return true;
}

}
else ifc is a rule of the form(p1 ∧ . . . ∧ pn) ⇒ q andq = currentGoal
{ newGoalList:= p1, . . . , pn and tail ofGoalList;

if BACKWARDSCHAINING (newGoalList)
{ return true;
}

}
}
return false;

In the lecture, we’ll trace the operation of the algorithm using the loan knowledge base, including the four facts given
above. Again we will invoke BACKWARDSCHAINING ([ok]). From this you should understand why phrases such as
backwards-chaining, top-down reasoning, goal-driven reasoning and hypothesis-driven reasoning are used.

Class Exercise.Suppose the knowledge base contains a rule of the formp ⇒ p or a chain of rules with a similar effect.
Does such a rule cause a problem for (a) this backwards-chaining algorithm; (b) for the forwards-chaining algorithm?

3.3 Discussion

3.3.1 More than two classes

A rule-base can contains rules that establish membership ofas many classes as you wish. For example, here is a simple
animal identification rule-base, which can classify animals as giraffes, zebras or elephants. Note that the AND-OR
graph has more than one root.

suckles⇒ mammal
hairy ⇒ mammal
(mammal∧ chewsCud) ⇒ ungulate
(ungulate∧ longNeck) ⇒ giraffe
(ungulate∧ striped) ⇒ zebra
(ungulate∧ tusks) ⇒ elephant

giraffe zebra

ungulatelongNeck

mammal chewsCud

striped

suckles hairy

elephant

tusks

The forwards-chaining algorithm easily accommodates thisexample. We invoke it with a list of the classes as its goals,
FORWARDSCHAINING ([giraffe, zebra, elephant]). It terminates as soon as any one of these gets established, and we
can check to see which one was established.

7

The easiest way to use the backwards-chaining algorithm is to invoke it repeatedly. First invoke BACKWARDSCHAINING ([giraffe]);
if it returns true, then you can conclude the animal is a giraffe. If it return false, then invoke BACKWARDSCHAINING ([zebra]);
if it returns true, then you can conclude the animal is a zebra. If it returns false, finally invoke BACKWARDSCHAINING ([elephant]);
if it returns true, then the animal is an elephant. If it returns false, this animal could not be classified using these rules.

3.3.2 Syntactic variations

You can use attribute-value pairs in places where we used propositional symbols, e.g.:

(legs= 4 ∧ tusks= 2 ∧ hairy = yes) ⇒ class= elephant

This might look better, but it adds no real expressive power.

There are, of course, other variations whichwould add expressive power. Some of them might even take us beyond
propositional logic into predicate logic. We could not thenexpect our forwards- and backwards-chaining algorithms
to work without modification.

3.3.3 Extralogical variations

Once you move to attribute-value pairs, you might be temptedto allow relations other than equality, especially in the
antecedents of the rules, e.g.:

sal > 30000 ⇒ pymt

Suppose one of the facts about the current loan applicant issal = 32000, then you will presumably intend that the
system can derivepymt. This is going beyond what⇒-elimination can do for you!⇒-elimination requires an exact
match.

To see that the rule’s antecedent,sal > 30000, and this fact,sal = 32000, do ‘match’ requires you to ‘step outside’
of logic and exploit the arithmetic facilities of your machine. Your system will no longer be purely logical; it uses
someextralogicalfacilities (where ‘extra-logical’ means ‘outside of logic’). This might be very convenient in your
task domain, and there’s nothing to stop you from building a system that works in this way.

3.3.4 Interactive systems

Rule-based systems have been successfully used in practice, and for tasks other than classification too. In practice, they
are most usually interactive systems. This means that, while we will assume that all theruleswe need are already in
the knowledge base, we do not assume that all thefactsare known and stored already in the knowledge base. Instead,
the user will supply the facts interactively during the session.

In forwards-chaining systems, the user is asked to supply some facts. The system then does as much forwards-chaining
using these as it can. If the desired conclusion has not been established, then the user might be prompted for more
facts, and another round of forwards-chaining begins.

In backwards-chaining systems, when the system is trying tosee whether a leaf node (fact) is true or not, it will check
the knowledge base but, if it is not in the knowledge base, then it will ask the user a question to determine whether the
fact is true or false. The user’s answer can be added to the knowledge base.

Some systems work exclusively using one or other of backwards-chaining or forwards-chaining. But many interleave
the two. This can be very natural for an interactive system. Consider a consultation with a human doctor. The patient
describes some symptoms. Conclusions are drawn (maybe onlytentatively) using forwards-chaining. The doctor
selects a hypothesis and, through backwards-chaining, arrives at a question that is addressed to the patient. The patient
speaks again, perhaps answering the question and/or volunteering other information. And so the process repeats.

8



3.3.5 Explanations

It is often important that a system be able to explain its reasoning. Rule-based systems usually offer two kinds of
explanation, known aswhyandhowexplanations.

A whyexplanation is anascentof the AND-OR graph. It shows why it is useful to establish that a node in the graph
is true: it shows which rules could fire.

A howexplanation is adescentof the successful parts of the AND-OR graph. It shows how a node was established to
be true: it shows which rules did fire in reaching that conclusion.

3.3.6 Where do the rules come from?

Rules are little nuggets of knowledge. It was originally thought that human experts could easily provide us with
knowledge expressed in rule form. On the whole, this has proved not to be true. The first handful of rules might be
easily acquired, but it becomes increasingly hard to obtainmore rules to improve the coverage of the knowledge base.
Different experts may disagree. Experts may be unable to articulate their knowledge. The brake this put onto the
development of expert systems became known as theknowledge acquisition bottleneck.

Increasingly then, rules are learned from datasets. Unfortunately, we do not have time to look at the algorithms for
doing this.

9


