Evaluating Classifiers

Suppose you have collected a dataset of already-classifignices and you have built a classifier. Maybe your
classifier is a probabilistic one using the joint probapititstribution; or maybe it's a naive Bayes classifier; oytra
it uses KNN; or maybe it works in some other way. How will yowknhow good your classifier is?

1 Accuracy

The simplest form of evaluation is in terms dfssification accuracythe proportion of instances whose class the
classifier can correctly predict. But how can we find this out?

We take a dataset that contains instances whose class adykeow. We ask the classifier to classify each of these
instances in turn. Then we compare its prediction with theaclass of the instance. We take the proportion of
correct classifications as an estimate of the accuracy afléissifier.

In fact, we can draw up what’s known aganfusion matrixe.qg.:
‘ predicted class

spam  ham
actualspam‘ 580 120

class ham 10 290

In this example, the classifier's accuracy is 0.87: it class$i870 of 1000 emails correctly.

It is tempting to draw up this matrix and calculate the accynasing the same dataset that you used to build the
classifier. But this is not a proper way to evaluate your diess

What we're trying to find out is how well the classifigeneralisesi.e. how well it is likely to perform orunseen
instances that will get presented to it in future when it imbeused for real.

Its accuracy on examples it has alreaen(the ones from which probabilities were calculated in avedayes
classifier, or the ones stored in the memory of a kNN claskifidikely to be a hopelessly optimistic estimate of this
future performance. The accuracy of & N classifier, for example, when tested on the very same exartipde¢ are
already in its memory, can be 100%! Of course, it is highlyikely that thel N NV classifier, if it were then deployed
for real, would classify without error.

We must build the classifier using one dataset, calledrttieing set And, we must evaluate it on a different dataset,
called thetest seta set of independent instances that played no part in hgildtie classifier. What do we require of
these two sets?

« Both sets must contain already-classified instances.

« Both sets must beepresentativesamples, where proportions in the sample are good reflsctibproportions
in the full population.

« Ideally, both datasets must be ‘large’.

— Generally, the larger thieaining set the better the classifier.

— Generally, the larger theest setthe more reliable the estimated accuracy will be. E.g. wiebei more
confident if the estimate is based on 1000 test instancethan0 test instances.

Rarely, however, will we be able to collesto large, independent and representative datasets of alaashified
instances.

Assuming we have collected one large dataset of alreadgified instances, we will look at several ways of forming
training and test sets from this single dataset.

1.1 The holdout method

The simplest method is to take your original dataset andtjoarit into two, randomly selecting instances for a traigi
set (usually 2/3 of the original dataset) and a test set (flif3eodataset). You build the classifier using the trainirg se
and then evaluate it on the ‘held-out’ test set.

This has the advantage of being simple. But it makes poor Uise@vailable data and it raises questions about the
representativeness of each dataset (e.g. you may justajgtiith all the ‘easy’ instances in the test set).

1.2 The repeated holdout method

The holdout method can be made more reliable by repeatiegétral times, with randomly selected training and test
sets each time. The accuracies obtained on each iterat@varaged to give an overall accuracy.

The more iterations that are used, the less effect ‘luckjioiucky’ sets will have on the result. However, the diffete
test sets may overlap and this may not be ideal.

1.3 Cross-validation

In k-fold cross-validation, the original dataset is first paotied intok subsets of equal sizé, . . ., P.. Each subset
is used in turn as the test set, with the remaining subsetg ltle¢ training set. In other words, firg%, ..., P, form
the training set and; is the test set; secon, Ps, ..., P, form the training set and is the test set; and so on;

finally, on thekth fold, P, ..., P,—1 form the training set and; is the test set. The accuracies from each of the
‘folds’ are averaged to given an overall accuracy. A typiadue fork is 10.

This avoids the problem of overlapping test sets and makgseffective use of the available data.

If time is available, you could even repeat the method migliimes, with different partitions each time.

1.4 Leave-one-out cross-validation

Leave-one-out cross-validation (LOOCYV) is a special cdsefold cross-validation in whiclk = n, wheren is the
size of the original dataset. Hence, the test sets are aitefls In other words, first instances, . .., x,, form the
training set and; is the only test instance; secomnd z3, . . ., x,, form the training set and, is the only test instance;
and so on; finally, on theth fold, 1, . . ., x,,—; form the training set and,, is the only test instance.

This makes the best use of the available data and avoid theepns of random selections. It is, however, time-
consuming.

1.5 Parameter tuning

Most classifiers have parameters, and their values needtfodsen. The obvious example is the valué &r ak N N
classifier. Its value can have a large effect on accuracys @bgious, and probably less significant, are the values you
use to avoid zero probabilities in a naive Bayes classifier.

You might just guess these values. Then again, you might teany out different possibilities and select the best of
them. A common but strictly incorrect approach is to builasslfiers with different settings, test each of them on the
test set, and then report the accuracy found by the best . tHewever, the test set should not be useany wayto
create the classifier. The proper approach requires gglittie original dataset into three: training set, validaset
and test set. You select the best of the classifiers basedcanaay on the validation set. Then the accuracy that you
report to the world is that which you obtain on the test set.



1.6 And then...

Once evaluation of the classifier is complete, if you dedmd you want this classifier to go live (e.qg. if its accuracy
looks good enough), then you can usewimledataset to build your final classifier.

You might subsequently find that your classifier doesn’tqenfas accurately in practice as it did on your test set(s).
Why might this happen? It is possible that your classifierfbasd patterns in the training data that are not represen-
tative of the population as a whole. In this case, we say tietlassifieoverfitsthe training set. It happens when
the training set contains noise (i.e. erroneous exampleshen the training set is too small to be representative of
the population. There are a number of techniques for gugrirainst overfitting, but we won'’t discuss them in this
module.

2 Demos

In the lecture, we will look at a demo in which we classify thnling dataset using naive Bayes and a few versions
of KENN

Then we'll look at a demo using a spam database.

Exercises

1. (Past exam question)

(a) Explain what is meantin A.l. by the terctassification

(b) In a factory, the quality control department must cigsgie products into two classegintedor clean
Each object has two attributes: thigehas valuedight or heavy the colour has valueblackor grey. You
collect a dataset of 16 instances (below). Givejtiet probability distribution

[ size | colour ] class | [ size | colour [ class |
light | grey | tainted heavy| grey | clean
light grey || tainted heavy| grey || clean
light | grey | tainted heavy| grey | clean
light | black | tainted heavy| grey || clean
light | black | tainted heavy| grey || clean
light | black | tainted light | black || clean
light | black | tainted heavy| black || clean
heavy| black | tainted heavy| black || clean

(c) Using your joint probability distribution:
i. ComputeP(colour = grey).
ii. ComputeP(colour= black class= clean).
iii. ComputeP(colour= blacKclass= tainted).
iv. Determine whetheP(colour = black) is independent of(size= heavy. Show your working.
v. Classify the following new instance:

{size= light, colour = black}

Show your working.

(d) For the same dataset, use tiaéve Bayes classifidp classify the new instance from part (iii)e. Show your
working.

(e) Look atyour answers to questions 1(c)v and 1d. If youinbththesameclassificationexplain in general
when the two classifiers will agree on a given instance. If gbtaineddifferentclassificationsexplain
why this can happen.

In a competitor’s factory, product attributes asize which has values 0-10; adlour, which has values
white, greyor black You collect the following dataset of 5 instances, showrelveith a unique identifier
for ease of reference:

(

=

[id [ size] colour ] class
1 2 grey clean
2 4 grey clean
3 2 white || tainted
4 || 10 | black | tainted

A kNN classifier is constructed in which: global distance is jhst $um of the local distances; range-
normalised absolute difference is used to compute the ttisences betweesizes; and a local distance
function based on the following ordering is used to compléddcal distances betweenlours:

white < grey < black
What classification would thiBN N classifier give to the following new instance
{size= 8, colour = white}

i. using INN?
ii. using 3NN where the class is predicted by majority-vgfirand
iii. using 3NN where the class is predicted using inverseadise-weighted voting?

Show your working.

2. (Challenge exercise)

Suppose | run a competition in which | invite people to suletassifiers. They can submit any classifier they
wish, not just the ones we have covered so far. | inform etgrdmat | have a dataset containing 100 instances,
exactly 50 of which are of class A, and 50 are of class B. | imfdhem that | will be using LOOCYV to train
and test their classifiers using this dataset. The clas#iféobtains highest overall accuracy will win a year's
supply ofPants Pizza Parloumeal vouchers.

What classifier would you enter in order to guarantee to benm&r? Explain your answer.



