
Applications of Natural Language Processing

1 What are the applications of NLP?

Here is an incomplete list of tasks that involve processing natural languages to some degree or another. In each case,
systems have been built that go some way to performing these tasks automatically.

• Spelling and grammar checking;

• machine translation and machine-aided translation;

• document classification (e.g. spam detection; author identification; plagiarism detection; etc.);

• information retrieval;

• question answering;

• summarisation;

• report generation (e.g. software documentation generation);

• natural language interfaces to databases;

• dialogue interfaces to intelligent agents (e.g. interfaces to non-player characters in games; recommender sys-
tems; diagnostic systems; etc.)

• . . .

Consider what may strike you as the simplest of these tasks: spell-checking. At first glance, surely all that is required
is for the system to check whether each word in the document isin the system’s lexicon or not! Such a simple-minded
spell-checker will correctly identify the error in the following sentence:

(1) “Three steps are neccesary.”

But, in fact, this is just the bare minimum of what is required. If a spell-checker is to realise that this sentence

(2) “This is unnecessarily complicated.”

has no error, it will probably need to know themorphologicalrules of English. The ‘word’“unnecessarily”is unlikely
to be in the system’s lexicon, not because it is incorrectly spelled but because, as we’ve discussed before, a typical
lexicon contains only word roots and the system needs to realise that“unnecessarily” is a correct combination of un
+ necessary + ly.

This next sentence does have a spelling error but a spell-checker would needsyntacticknowledge to find it:

(3) “I don’t know weatherthis is correct.”

The sentence requires a conjunction (presumably“whether”) where the author has written the correctly-spelled noun
“weather” .

To realise that“principle” and“principal” should probably be swapped in sentences (4) and (5) requiresan appreci-
ation of their meaning (and, quite possibly, some world knowledge):

1

(4) “The principleof the school asked to speak with me.”

(5) “The principal of the school is ‘Carpe Diem’ - ‘Seize the Day’ ”

In the next example, the system would have to inspect other sentences to know whether“principal” has been spelled
correctly!

(6) “The principal of the school is simple. . . ”

Am I arguing that to build spell-checkers we need to solve allthe problems of natural language processing? Of course
not! Anyspell-checker is better than none: anything that assists usin our writing, even if it is not perfect, is useful.
And this makes an important point. We are a long way from solving all the problems of natural language processing
(if we ever will). But useful systems can be built now.

There is arguably a continuum of systems, ranging from thosethat do ‘shallow NLP’ to those that (try to) do ‘deep
NLP’.

2 ‘Shallow’ and ‘Deep’ NLP

A ‘deep’ NLP system is one that attempts to build a meaning representation (usually wffs of logic) for the sentences
it processes. Hence, at the very least it has a semantics module (which, if you believe that syntax drives implies that it
also has a syntax module, i.e. a parser). It may also have modules for pragmatics and for bringing world knowledge to
bear.

But there is a continuum ofusefulsystems that get by with less than this. These systems are, ina non-pejorative
sense, ‘shallow’ to different degrees. Shallow systems tryto carry out their tasks without building full meaning
representations. While the difficulties of building successful deep systems have become ever more apparent (e.g.
the vast amount of linguistic and non-linguistic knowledgethat is needed), there has grown an increasing amount
of research and development into shallower systems, with the goal of building useful systems that would work well
enough across wider ranges of text.

Over the same period, we have seen an increasing use of machine learning to obtain the knowledge that NLP systems,
especially shallow NLP systems, use. Learning the knowledge, where possible, is obviously preferable to hand-coding
it.

And over the same period, statistical and probabilistic approaches have grown in popularity. The probabilities are
relatively easily ‘learned’ from bodies of text. We can thank the Web in part for making this machine-readable text
plentifully available.

We will illustrate some of these developments with reference to machine translation systems.

3 Machine Translation

Work on Machine Translation (MT) started in the 1950s, with afocus on translating between Russian and English. The
different approaches, from shallowest to deepest, can be illustrated, in a simplistic way, using the Vauquois Triangle:

2

analysis generation

direct transfer

syntactic transfer

transfer
semantic

interlingua

source language target language

The deepest approach (which has never been achieved in practice) is to analyse the source document as much as
possible (syntax, semantics, pragmatics, etc.), producing a meaning representation in a language referred to as an
interlingua. This is typically to be thought of as some kind of logic (or, equivalently, knowledge representation
language) that is as language-neutral as possible: the language of ‘pure thought’! Then, similar processes are applied,
in reverse, to produce the corresponding document in the target language.

But there is a range of shallower approaches. These often work adequately well for the purposes to which we put
them. For example, a rough translation of a scientific publication from Russian to English by a shallow MT system
will probably be sufficient for the English reader to get the ‘gist’ of the article, to determine whether the article is
relevant, to determine its main contribution and to decide whether to commission a high-quality human translation.

The simplest shallow approach (at the bottom of the Triangle) is called direct transfer: take each word in the source,
find a corresponding word in a bilingual dictionary, and replace one by the other. Here’s how this might work in the
case of English to French:

(7) The man sees the woman.”

(8) “La homme voit la femme.”

In this example, the translation is nearly correct! In fact,often the output will be intelligible. But very frequently the
output will be ungrammatical; occasionally, it will be wordsalad!

Even slightly less shallow approaches can improve the quality of the translation. For example, suppose we do some
syntactic analysis. Maybe we don’tparsethe sentences and build phrase-structure trees. Maybe all we do is work out
the categories of the words in the sentence. (This is called part-of-speech tagging, see below.) This will help! Suppose
the word we are translating is a noun. Suppose too that the word has multiple translations, but only one of these is a
noun. Then, this is the one we should probably choose. For example, in the next sentence, knowing that here“sleep”
is being used as a verb is enough to know to translate it using the verb“dormir” and not the noun“sommeil”:

(9) “I sleep well.” i.e. Pro V Adv

(10) Je dors bien.”

(Similarly, the adverb“well’ gets translated by adverb“bien” and not noun“puits” .)

We can also equip the system with transformation rules that rely on knowing the categories of the words. For example,
if the source is English and contains an adjective followed by a noun, then the output in French can place the adjective
after the noun (which will often be correct — but not always).

(11) “red wine”

3

(12) Adj N

(13) “vin rouge” i.e. N Adj, not“rouge vin” i.e. Adj N

If we could work out the likely meanings of the words (word sense disambiguation, see below), then this might help
further. In the following example,

(14) “I keep my money in the bank”

by realising that“bank” here is most likely a financial institution and not a river bank, we would know to translate it
as“banque” and not“rive” .

The most amazing of these shallow MT systems is Systran, which was developed in the 1960s, has been continually
updated, has been used in numerous commercial and government organisations, and is still going strong. It has recently
gained a new lease of life since it powers AltaVista’s BabelFish for translating web pages. Systran uses a combination
of simple syntactic transfer, ad hoc rules and a vast lexiconof pre-translated phrases, resorting to direct transfer when
all else fails.

We’ve mentioned part-of-speech tagging and word sense disambiguation. In the next two sections, we’ll discuss
(shallow) ways in which these can be done. (Note these are notnecessarily techniques used by Systran.)

Class Exercise.Imagine the European Union has an MT system than can translate between every pair of national
languages. One day, the Irish successfully argue that IrishGaelic is their national language and should therefore be
a language recognised by the EU and added to the MT system. Which do you think would be the easier kind of MT
system to update: one based on shallow processing or one based on an interlingua?

4 Part-of-Speech Tagging

Part-of-speech tagging (POS tagging) is not the same as parsing. In tagging, the goal is not to build a phrase-structure
tree. It is simply to work out the most likely syntactic categories of the words in the sentence, e.g.:

(15) “Ann saw the man with the telescope.”i.e. Name V Det N P Det N

Note that, while tagging involves much less work than parsing, it is not a simple look-up process. If we look up“saw”
in a lexicon, we find that it is both a noun and a verb. A good POS tagger must realise that, in the sentence above,
“saw” is most likely a verb (V).

An immediate observation is that this is a classicclassificationproblem: given information about an object, predict
which of a small, finite set of predefined classes it belongs to. Here, we are given a word and we want to predict its
syntactic category (its part-of-speech), and there is a relatively small, finite number of these.

In the earlier part of this module, we saw several ways of building classifiers. For POS tagging, probabilistic methods
are the most common. The currently most effective methods work on the basis ofn-grams, which just means that the
n − 1 previous words are used to guide the prediction. To keep the notation simple, we’ll look at abigramapproach,
in which just the previous word is used. (And we won’t get bogged down in what happens with the first word of a
document, which has no previous word!)

So, given a wordwi, we want to find out how probable it is that this word is, for example, a noun (N), given the
previous wordwi−1,

P (class= N |current= wi, previous= wi−1)

We want to do the same for all the other possible categories thatwi can have (e.g. V, Det, Pro, etc.), and then choose
the one that has the highest probability. If we letL be all ofwi’s possible categories, then we want to compute the
above probability for eachcl ∈ L and choose thecl with the highest probability.

4

(The rest of this section is revision! It simply explains thenaı̈ve Bayes classifier again, applied to POS tagging.)

Since it’s unlikely that we have the joint probability distribution, we reformulate using Bayes’ rule:

P (class= cl|current= wi, previous= wi−1) =

P (current= wi, previous= wi−1|class= cl) × P (class= cl)

P (current= wi, previous= wi−1)

It’s unlikely we have these probabilities either! But, we make the simplifying assumption that the value ofcurrentand
previousare conditionally independent given the class. In other words, we use the naı̈ve Bayes classifier. What we
need to compute is:

=
P (current= wi|class= cl) × P (previous= wi−1|class= cl) × P (class= cl)

P (current= wi, previous= wi−1)

for eachcl ∈ L. Remember we don’t need the divisor because it will be the same for each categorycl ∈ L.

Where will we get these probabilities? We must take a large body of text and ask a human to tag it manually. Then we
can obtain the probabilities by computing relative frequencies. Note that many of the probabilities will be zero, and
this is a problem for this classifier. However, in our earlierlecture on this topic we briefly discussed the remedies for
this.

In practice, POS taggers often use trigrams, not bigrams, i.e. they base the classification on the previoustwo words.
These taggers typically have about a 95% success rate. This sounds great until you learn that a unigram approach (i.e.
taking no previous words into account, just basing the prediction on the current word’s most frequent tag) scores about
90%. So, the extra effort isn’t buying a great deal of extra accuracy.

5 Word Sense Disambiguation

Word sense disambiguation (WSD) is also a classification problem (assuming that we believe that each word has only
a finite number of distinct meanings).

5.1 Näıve Bayes

We can, of course, use the naı̈ve Bayes classifier again. Thistime,L will be all of wordwi’s possible meanings. The
formulae are all otherwise the same. However, if we are to obtain the probabilities by computing relative frequencies,
we require humans to manually disambiguate large quantities of text. This is even more time-consuming than manual
POS tagging.

I’ve no straightforward figures for how accurate naı̈ve Bayes classifiers are for WSD. One much-quoted figure is that
the unigram approach (as above, i.e. taking no previous words into account, just basing the prediction on the current
word’s most frequent meaning) scores about 75%.

5.2 Lesk’s approach

Michael Lesk proposed a shallow, simple but quite effectiveWSD algorithm. Again to choose the meaning of word
wi it looks at surrounding words and, for simplicity, we will assume it just looks at the preceding word,wi−1.

The algorithm requires access to a machine-readable dictionary. The different meanings of wordswi andwi−1 are
retrieved from this dictionary. For each ofwi’s meanings and for each ofwi−1’s meanings, we count the number of

5

words in common between the dictionary definitions. The pairof meanings that have the most in common are chosen
to be the meanings of the two words.

Here’s Lesk’s example. Suppose the phrase“pine cone” appears in your document.“pine” and “cone” are both
ambiguous. We look up each one in the dictionary and we find thefollowing:

pine 1. kind of evergreen tree with needle-shaped leaves. . .
2. waste away through sorrow or illness

cone 1. solid body which narrows to a point. . .
2. something of this shape whether solid or hollow. . .
3. fruit of certain evergreen tree. . .

Now compute the size of the intersections between the pairs of meanings:

| pine-1∩ cone-1| = 0 | pine-2∩ cone-1| = 0
| pine-1∩ cone-2| = 1 | pine-2∩ cone-2| = 1
| pine-1∩ cone-3| = 3 | pine-2∩ cone-3| = 0

So the meanings are pine-1 and cone-3! (In the example, word such as“of” were counted. In practise, they wouldn’t
be.)

5.3 Sortal Restrictions

The final approach we will mention requires a somewhat deeperanalysis.

We can group individuals intoclasses. For example, there are individuals that are physical objects and those that are
abstract objects. And we can devise aclass hierarchy. For example, the physical objects subdivide into the animate
ones and inanimate ones; the abstract objects subdivide into the events, processes and states. These subclasses might
further subdivide into their own subclasses.

It is clear that the arguments of a relation or a function are often restricted to individuals of certain classes. For example,
the two-place ‘drink’ relation requires the drinker to be animate and the object drunk to be a fluid physical object; the
one-place ‘crawl’ relation requires the crawler to be an animal. These restrictions on the sorts of the arguments of
relations are referred to assortal restrictionsor selection restrictions.

If a sentence is ambiguous and one of its meanings violates sortal restrictions and the other does not, then we can
choose the meaning that does not violate the sortal restrictions. For example,

(16) “A bug crawled into the sugar bowl.”

contains an ambiguity: the word“bug” may denote insects, microphones or software errors. However, the sortal
restriction on the argument of“crawled” dictates that only the first meaning gives rise to a meaning for the sentence
as a whole.

Interestingly, not only does this help in WSD, it may help with other forms of ambiguity too. For example, it can help
with resolving referents (which we discussed in the previous lecture):

(17) Ann took her wine to the table and drank it.”

We take“it” to refer to the wine and not the table because of the sortal restrictions on ‘drink’. And it can help with
structural ambiguity (where there is more than one phrase-structure tree). For example,

6

(18) The man walked past the shop smoking a cigar.”

has two phrase-structure trees: one in which“smoking a cigar” modifies“walked past the shop”and therefore tells
us more about the way the man was acting, and another in which“smoking a cigar” modifies“the shop”, but which
violates sortal restrictions.

Intriguingly, some people claim that violated sortal restrictions help reveal non-literal uses of language. In sen-
tence (19), for example,

(19) “My car drinks petrol.”

the literal reading would violate a sortal restriction, buta non-literal reading might be possible.

One major criticism of the use of sortal restrictions is thattheir enforcement is inflexible. If we make the constraints
very specific (as may be needed for high discriminating power), they may reject perfectly acceptable utterances. But
as we ‘loosen’ them to accommodate a wider range of uses of a verb, we may end up with vacuous constraints that are
rarely violated. For example, what is the sortal restriction on the killer in the ‘kill’ relation? Human murderers, wild
animals, missiles, diseases, and bad news: all can be killers. Similarly, what is the sortal restriction on the killed object
in the ‘kill’ relation? Living things, time, proposals and interest can all be killed. The sortal restrictions would appear
to be that the killer must be a thing, and the killed object must be a thing. This is no constraint at all! This has led to
the proposal that these sortal restrictions be treated aspreferencesrather than as absolute restrictions. Violation of a
sortal preference would not cause a sentence reading to be rejected. Instead, by keeping some measure of the number
and severity of the violation in each reading, readings can be ranked.

6 Conclusions

One theme of this lecture has been how the ‘Holy Grail’ of ‘deep’ NLP is not necessary in the short-term for building
usefulsystems. The other theme, however, has been that, if we can make the systems even a little deeper, then they
will generally (but not always) perform better. We’ve illustrated this with reference to spell-checking and MT. Here’s
another illustration.

Recently, there has been a lot of interest in building systems for Question Answering (QA). Everyone agrees that QA
answering is different from Information Retrieval (IR), although there is not a sharp separation between the two. In
QA, the user poses a question and s/he does not want a long listof possible relevant documents, through which s/he
must search for the answer. Rather, it is the job of the systemto extract the relevant information and present an answer
to the question in a personalised presentation.

Without going into details, it is interesting to note the performances of various systems entered into a QA competition
held in 2000. I will show you a graph in the lecture that demonstrated that, on the whole, the systems that used
knowledge of language, even quite shallow knowledge, performed better at this task than the more traditional IR
systems.

Exercise

1. What is meant bycompositional semantics?

2. What is meant in compositional semantics bythe rule-to-rule hypothesis?

3. Here is a Context-Free Phrase-Structure Grammar and lexicon for a fragment of the English language in which
grammar rules and lexical entries are paired with semantic rules (using the notation from the lectures):

7

Grammar rule Semantic rule Word : Category : Semantics
S→NP VP S′ = VP′(NP′) Becks: Name : λP [P (becks)]

NP→Name NP′ = Name′ Posh: Name : λP [P (posh)]
NP→Det N NP′ = Det′(N′) every: Det : λQ[λP [∀x(Q(x) ⇒ P (x))]]
VP→Vi VP′ = Vi′ player : N : λx[player(x)]
VP→Vt NP VP′ = Vt′(NP′) scored: Vi : λP [P (λx[scored(x)])]

hates: Vt : λP [λQ[Q(λx[P (λy[hates(x, y)])])]]

Draw a parse tree for each of the following sentences. Annotate each node of your trees with its semantics. Use
lambda-reduction to simplify as much as possible. Show yourworking.

(a) Becks scored

(b) every player hates Posh

4. Each of the following sentences is ambiguous in multiple ways. For each sentence, list the ambiguities and the
type of each ambiguity (structural, lexical, etc.)

(a) Becks reached the ball.

(b) Becks kissed a former lady friend.

(c) Posh hit the photographer with his tripod.

5. Identify the knowledge that would enable an agent to resolve the referents of the underlined pronouns (i.e. to
whom they refer):

(a) Posh has a Yorkshire terrier, Lucy. Shesings Spice Girls hits when theygo for a walk.

(b) Becks always takes baby Romeo to the match. Heuses the opportunity to teach himto speak.

6. For each of the following sentences, identify the problemthat the sentence causes for compositional semantics.

(a) Every loving son adores his mother.

(b) Someone is loved by everyone.

(c) Fergie gave him the sack.

8

