
Semantics and Pragmatics

1 Semantics

As we have said previously, current theories of semantics assume that semantics is computedcompositionally: the
meaning of an expression is a function of the meaning of its parts. The way we achieve this is with what’s called the
rule-to-rule hypothesis: we associate a semantic rule with each syntax rule.

To give an example of this, we have to introduce some new notation: lambda-expressions. (Even so, our treatment is
informal. A proper treatment would involve a considerationof what is calledtype theory.)

• If X is a variable andE is an expression, thenλX [E] is a lambda-expression. For example,λx[died(x)] is a
lambda-expression. Lambda-expressions are a way of writing functions without giving them names. Effectively,
the lambda variables are the parameters, soλx[died(x)] is a function that takes in one argument.

Given that lambda-expressions denote functions, then we can write expressions where we apply the function to an
actual argument. This is calledlambda-reduction.

• If λX [E] is a lambda-expression, thenλX [E](A) is the application of the lambda-expression to argumentA. An
example isλx[died(x)](ann). These kinds of expressions can be simplified. You simply write the expression
E after replacing all occurrences of the variableX in the expressionE by the argumentA. For example,
λx[died(x)](ann) simplifies todied(ann).

Using this notation, we can give a version of our grammar in which grammar rules are associated with their corre-
sponding semantic rules. I’m also using some more notation.When I write, e.g.,S’, this means the semantics of the
S.

Grammar rule Semantic rule Word Category Semantics

S→NP VP S’ = VP’(NP’) Ann: Name : ann
NP→Name NP’ = Name’ Ben: Name : ben
VP→Vi VP’ = Vi’ died: Vi : λx[died(x)]
VP→Vt NP VP’ = Vt’(NP’) saw: Vt : λy[λx[saw(x, y)]]

Here are parse trees for“Ann died” and“Ann saw Ben”. In the lecture, we’ll compute the semantics of each node
using the rules above.

S

NP

Name

Ann

VP

Vi

died

S

NP

Name

Ann

VP

Vt

saw

NP

Name

Ben

In fact, the above is a carefully chosen grammar: one with quite simple semantics. Let’s also look at a slightly more
complicated but slightly more realistic example:

1

Grammar rule Semantic rule Word Category Semantics

S→NP VP S’ = VP’(NP’) Ann: Name : λP [P (ann)]
NP→Name NP’ = Name’ Ben: Name : λP [P (ben)]
NP→Det N NP’ = Det’(N’) every: Det : λQ[λP [∀x(Q(x) ⇒ P (x))]]
VP→Vi VP’ = Vi’ died: Vi : λP [P (λx[died(x)])]
VP→Vt NP VP’ = Vt’(NP’) saw: Vt : λP [λQ[Q(λx[P (λy[saw(x, y)])])]]

dog: N : λx[dog(x)]

Here are parse trees for“Ann died” and“Every dog saw Ben”. In the lecture, we’ll compute the semantics of each
node using the rules above.

S

NP

Name

Ann

VP

Vi

died

S

NP

Det

every

N

dog

VP

Vt

saw

NP

Name

Ben

Where do semantic rules come from? They come from knowledge engineers. Machine learning has made no impact
here.

2 A Few Words on Pragmatics

Recall that the concern of pragmatics iscontext-dependent linguistic meaning. It includes a rag-bag of topics: de-
termining the referents of referring expressions (e.g. determining to whom or to what the underlined phrases refer in
“A man threw a ball to hisson whocaught the balland threw itback to him.”); determining the ‘force’ conveyed by
an utterance (e.g. working out the speech act being performed when the sentence“Do you have change for a fiver?”
is uttered in different contexts); and handling a variety ofnon-literal uses of language (e.g. working out whether a
sentence such as“The kettle is boiling” is being used literally or not).

Presently, while some of the work on pragmatics is very sophisticated, taken as a whole it is still not very successful.
There are many reasons for this, including that it was initially neglected; it requires that a lot of knowledge be repre-
sented; it requires considerable reasoning capabilities;and so on. One other observation we will make is: pragmatics
is not compositional, as can be seen from the following examples:

(1) “Ben loves himself.”

(2) “Ann loves Ben’s dog. It barks with pleasure when it sees her.’

(3) “Ann kicked the bucket.”

The context-dependent meaning of these sentences or phrases within these sentences is not simply a function of the
meaning of their parts: their context-dependent meanings arise from other parts of the sentence, previous sentences or
from other knowledge entirely.

To illustrate further, we will take a simple-minded approach to the problem of reference resolution. SomeNPs in-
troduce new entities into the context; others identify entities already existing in the context. Roughly, indefiniteNPs
(ones where theDet is “a”) introduce new entities; definiteNPs (ones where theDet is “the”) and pronouns (e.g.
“he” , “she” , “it”) refer to existing entities. (There are numerous exceptions to the previous sentence! But it will

2

suffice for our purposes.) See the earlier sentence about throwing a ball: the ball is introduced by the phrase“a ball” ;
it is later referred to again by the phrases“the ball” and“it” .

The simplest way to handle reference resolution is to maintain a history list. This is a list of entities introduced or
referred to in the text, ordered byrecencyof mention, i.e. as we search the list, we encounter the most recently-
mentioned entities first. IndefiniteNPs add new entities to the list. DefiniteNPs also add entities to the list, but the
entities added are not new ones: they are found by searching through the history list. The first entity which this search
encounters that is syntactically and semantically compatible with the definiteNP is the referent.

Here’s a simple example. We will process the following sentences:

(4) “Ben went to see Ann yesterday. She was busy looking for Col. He. . . ”

We will assume that the name“Ann” translates to the logical constantann; similarly for “Ben” and “Col” . This
shows what happens:

Sentences Actions History list
[]

Ben. . . addben [ben]
. . . went to see Ann. . . addann [ann, ben]
. . . yesterday. She. . . search list for first female, i.e.ann;

this is the referent of“She” ;
add again to the list [ann, ann, ben]

. . . was busy looking for Col.” addcol [col, ann, ann, ben]
He. . . search list for first male,
i.e.Col;

this is the referent of“He” ;
add again to the list [col, col, ann, ann, ben]

The final word,“He” , is predicted to refer to Col. Do you agree?

In fact, this is hopelessly over-simplified but it gives the flavour. It can be made more sophisticated by making the
search sensitive to more constraints and preferences in addition to recency of mention. The following are possibilities:

Frequency: Prefer more frequently mentioned entities.

(5) “Ben was feeling good. Col went to the pub with him and Edd to celebrate. He. . . ”

Frequency predicts“He” is Ben; recency predicts Edd.

Subject NPs preferred over object NPs preferred over other NPs: This preference is based on entities that play
particular roles in the previous sentence.

(6) “Ben went to the pub with Col. He. . . ”

“Ben” is the subjectNP in the first sentence while“Col” is the objectNP. So, although Col is more recent, the
prediction here is to prefer Ben to be the referent of“He” .

Structural parallelism: This heuristic prefers entities to play the same roles in structurally similar sentences.

(7) “Ben went to the pub with Col on Tuesday. He played footie withhim on Wednesday.”

Recency suggest that“He” is Col, but structural parallelism suggest that“He” is Ben and“him” is Col.

These will often give conflicting judgements. We shouldn’t be too surprised. Reference resolution in general requires
the use of reasoning on world knowledge (recall the example about the fascists and the council). And, even in human-
to-human communication, there can remain cases that the listener cannot resolve and cases s/he resolves incorrectly.

3

