Grammar and Parsing

1 Parsing

For a given input string, a parser will attempt to find one orenparse trees for that string. (In fact, we’ll see in the
next lecture that, in systems where semantic translatitto (ogic) is interleaved with parsing, producing the parse
trees may not be required. However, the basic operatioregfdinser remains the same.)

There are at least two different ways that parsers can aperat

Top-down parsing: The parser tries to build phrase-structure trees startimg their root nodes, adding branches
and nodes until it reaches the leaves. This is a bit like bac#g+chaining: you're working from a hypothesis
towards the facts (words).

Bottom-up parsing: The parser builds phrase-structure trees from the leadéi@branches and nodes until they
reach the root. This is a bit like forwards-chaining: yowtrerking from what you know (the words).

An advantage of bottom-up parsing arises in connection patisingfragmentary inputWe do not always communi-
cate in full sentences. In most top-down parsers, the paegns with an initial hypothesis about what the category
at the root of the parse will be, usual, Obviously, with this hypothesis, a fragmentary input aatnioe parsed.
Bottom-up parsing, however, is more amenable to parsing fagments: it can work away at the words, and see
what it comes up with.

It might also be more psychologically plausible to parsedsotup. In fact, it is likely that human parsers work in
both directions: incoming words are parsed bottom-up,Hiatdets up expectations (top-down hypotheses) about how
subsequent words will be parsed.

There are other ways that parsers can differ. They might work left-to-right or right-to-left. Working left-to-rigt
would seem to have the greater plausibility. But a case candse for bidirectionality here too: working outwards
from important words in the sentence.

Finally, bear in mind that parsing is a search process. Thiiree choices. Depending on how we process the agenda,
we may parse breadth-first, depth-first or something elseréffisome bad news here too. Parsing using a CF-PSG is
intractable: in the worst case, the number of parse treepizentially related to the length of the string. (In preeti
average case behaviour on typical natural language grasremdrtypical input string lengths is more important, and
is not prohibitively inefficient.)

We're going to look at a bottom-up parser which works front-tefright and uses an agenda to manage its search.

2 Shift-Reduce Parsing

The parser we look at is by no means the best available for K& ain advantage is that it is quite simple. It has
also formed the basis of a number of variants that peoplencaé psychologically quite plausible ways of parsing. It
is not, however, one of the more efficient parsers.

A shift-reduce parser employs two data structurelsufferthat contains the unprocessed part of the input string, and
astackon which a parse is gradually assembled. The state of thesdata structures at any point in the algorithm is
referred to as the parsecsnfiguration

At any step, the parser can carry out one of two operations tWh operations are:

Shift: In shift operations the next word of the input string is mofredn the buffer to the top of the stack: if the next
word of the input string is some and the stack is presently.. X], whereX is the top of the stack, then the
stack becomeps.. X w].

Reduce: In reduce operations, the parser finds an entry in the lexdcoireplaces the word on the top of the stack by
its category. Or it finds a rule in the grammar whose rightehside matches the constituents on the stack, one
by one, starting from the top and replaces these constitimnthe category on the left-hand side of the rule: if
thereis aruled — « and the stack contains.. «], wherea is the sequence of symbols on the top of the stack,
the categories on the stack are popped and the left-hand side of the rulesisqalj and so the stack becomes
... Al

On reaching a configuration in which the input buffer is emgotd the stack contains a single category, we have found
a parse of the string as a phrase of that category.

In the lecture, we'll pars&Ann saw Ben”using the shift-reduce parser and using the grammar armblexgjiiven in the
previous lecture. From the example, you will be able to saeshift-reduce parsers work bottom-up and left-to-right.

The example will also illustrate that at some steps of it€pssing the parser haslaoiceof operations and thus needs
to search. These decision points are referred toaflictsand can be subcategorised as follows:

Shift-reduce conflicts: In shift-reduce conflicts, the parser configuration is szt & shift is applicable and at least
one reduce is also applicable. For example, in the configurat

[Name] (saw Ben

either the word'saw” could be shifted onto the stack or, given that the top of thekstmatches the right-hand
side of the ruleNP — Name, theName on the top of the stack can be reduced\fe.

Reduce-reduce conflicts:In reduce-reduce conflicts, the parser configuration is shehmore than one reduction is
applicable. For example, in the configuration

[NP saw] (Ben

there are two applicable reductions, one usiag: V and the other usingaw: N. (Of course, a shift ofBen”
is also possible so there is a shift-reduce conflict in thigfigoiration too.)

Faced with a conflict, a simple shift-reduce parser will hiéingt to try one of the applicable operations and eventually
return and try the others: some may lead to parses, otherproag fruitless.

3 Definite Clause Grammars

We now present another grammar formalism, Bredinite Clause Grammar (DCGprmalism, that is much used in
computational work and that is one representative of a dagsammar formalisms, the unification-based grammar
formalisms, that form the basis of more linguistically adetg grammars than the CF-PSGs we have used up to now.

The grammar we gave in the previous lecture incorrectly fegisthe following ungrammatical strings are grammati-
cal.
(1) “This men saw Ann.”

(2) “Us died”

(3) “I seesthe mountain”

(4) “Anndied Ben.

It fails to enforce agreement betweBpts andNs; it fails to enforce agreement between subles andvPs; it fails
to allow only subjecNPs in subject position and objeblPs in other positions; and it fails to distinguish different
subcategories of verbs.

Of course, we could repair this by using more syntactic eaateg. For example, we could uSebjPro for words such
as“l” andObjPro for words such asme” . Unfortunately, we would then need more rules, 8igbjNP — SubjPro,
S — SubjNP VP, ObjNP — ObjPro andVP — V ObjNP.

But there is a much more elegant solution. Instead of usidiyisible symbols to label syntactic categories (such as
NP, VP, etc.), we use labels that have some internal structuresto.th

Grammar Lexicon
S —NP(SUBJ, z, y) VP(z, y) Ann: Name(SING) I:Pro(SUBJ, 1, SING)
NP(,, 3, z) — Name(z) Ben: Name(SING) me: Pro(OBJ, 1, SING)
NP(z, y, z) — Pro(z, y, 2) man: N(SING) we: Pro(SUBJ, 1, PLU)
NP(_, 3,) — Det(x) Nbar(x) men: N(PLU) us: Pro(OBJ, 1, PLU)
Nbar(z) — N(z) saw: N(SING) you: Pro(., 2,)
Nbar(z) — Nbar(z) PP telescopeN(SING) he: Pro(SUBJ, 3, SING)
VP(z, y) — V(INTRANS, z, y) mountain N(SING) him: Pro(OBJ, 3, SING)
VP(z, y) — V(TRANS, z, y) NP(OBJ, _, .) the: Det(.) she: Pro(SUBJ, 3, SING)
VP(z, y) — VP(z, y) PP this: Det(SING) her: Pro(OBJ, 3, SING)
PP —P NP(OBJ, _,) these Det(PLU) it: Pro(_, 3, SING)
with: P them: Pro(OBJ, 3, PLU)
on:P they: Pro(SUBJ, 3, PLU)

see V(TRANS, 1,), V(TRANS, 2,), V(TRANS, 3, PLU)
sees V(TRANS, 3, SING)
saw: V(TRANS, _,)

die: V(INTRANS, 1,), VINTRANS, 2,), V(INTRANS, 3, PLU)

dies: V(INTRANS, 3, SING)
died: V(NTRANS, _,)

We'll explain the grammar in the lecture. One important pérthat multiple occurrences of a variabiéhin a rule
must match the same expression. However, occurrences séthe variable namia different rulesare distinct and
need not match the same value. Computer scientists woulthaayariables artocal to rules.

Another important point is that underscorgié a variable but two underscores, even in the same ruleptlbave to
be matched to the same value. We refer to underscore astigymous variable

Where do such rules comes from? At present, they're writieknowledge engineers. Algorithms for learning rules
in which the predicates are allowed to have arguments (©4. Bnd GOLEM) might be applicable, but research is
only just beginning.

In parsing, when carrying out matching, we now, of courseumfication For example, if we are parsirffhe men
died” and we have shiftetthe” and reduced it to Bet and shifted'men” and reduce it to aN and then to aiNbar,
we will be in the following configuration:

[Det(.) Nbar(PLU)] (died)
We reduce using the ruP(_, 3, z) — Det(x) Nbar(z). The multiple occurences afin this rule force the argument

of theDet andNbar to be the same, and to be the same as the third argumentPthEhus, our next configuration
is:

NP, 3, PLU)] (died)

In the lecture, we’'ll draw a parse tree fhrsaw this man”.

Exercises

1. (Pastexam question) Here is a Context-Free Phraset@®@&rammar and lexicon for a fragment of the English
language:

S— NP VP this: Det, Pro airport: N
NP — Det N these Det, Pro airports: N

NP — Pro the: Det bus: N

N—NN is:Vbe buses N
VP — Vbe Adj are:Vbe stop: N
VP —Vbe NP busy: Adj stops N

(a) Draw the parse tree(s), if any, that this grammar ana¢exwould assign to each of the following strings
of words:
i. This bus stop is busy
ii. Thisis the airport bus stop
iii. This stops the airport bus
iv. These is the stop bus
(b) The grammar and lexicon above are being used to parsérihg ‘The bus is busy’using ashift-reduce
parser. The parser is currently in the following configuration:
[NP] (is busy
The stack is on the left and the input buffer on the right.

Draw a search tree with the above configuration as its roohowvshow the rest of the parse proceeds.
Each node in your tree will be a new configuration, producecitiyer shifting or reducing. Assume
breadth-first search.

(c) The grammar and lexicon above incorrectly parse marnggstrthat are not grammatical sentences of
English. Rewrite the grammar as a Definite Clause GrammaG(Dd lexicon so that the grammatical
strings still parse but the ungrammatical ones do not.

(d) Using your Definite Clause Grammar and lexicon, draw agree for the following:
The buses are busy

(e) Using your Definite Clause Grammar and lexicon, draw aprinplete parse tree and explain why your
grammar does not parse the following:

The buses is busy

2. (Past exam question) Here is a Definite Clause Grammareaiwbh for a fragment of the English language.
(z, y andz are variables; is the anonymous variable.)

S(statement)> NP(z, y) VP(finite, z, y) did : V(aux, finite,.,)
S(question)— V(aux, finite,z, y) NP(z, y) VP(base,, .) the : Det()

NP(3,2) — Det(z) N(x) Italian : Adj

N(z) — Adj N(z) wine : N(singular)

N(z) — N(2) N(z) merchants : N(plural)

VP(z, y, z) — V(intrans,z, y, z) arrive : V(intrans, base, .)

(a) This grammar and lexicon assign two different phrasgesires to the following sentence:
“did the Italian wine merchants arrive”
Draw parse treesor both phrase-structures.
(b) According to this grammar and lexicon the following sardes are not syntactically well-formed:
“the merchants brought the wine”
“did the merchants bring the wine”
Give the grammar rules and lexical entries that you would saldhat these sentences can be parsed,
without allowing any ungrammatical strings to be parsed.

(There is an answer that requires only one new grammar ralévamnew lexical entries. However, marks
are available for other answers.)

(c) The grammar tries to determine ttierce’ of speech acts based on the syntactic structure of sentences
For example, the root of the parse tree for the sent&theemerchants arrive”is labelled S(statement).
Explain, using one or more example sentences (not nedgssamtences that use this grammar and lexi-
con), why this approach to determining speech act ‘forceiaslequate in general.

(d) Write a brief (3 or 4 paragraph) discussion of the relatip betweematural language understanding
andknowledge engineering

