
Grammar and Parsing

1 Parsing

For a given input string, a parser will attempt to find one or more parse trees for that string. (In fact, we’ll see in the
next lecture that, in systems where semantic translation (into logic) is interleaved with parsing, producing the parse
trees may not be required. However, the basic operation of the parser remains the same.)

There are at least two different ways that parsers can operate:

Top-down parsing: The parser tries to build phrase-structure trees starting from their root nodes, adding branches
and nodes until it reaches the leaves. This is a bit like backwards-chaining: you’re working from a hypothesis
towards the facts (words).

Bottom-up parsing: The parser builds phrase-structure trees from the leaves, adding branches and nodes until they
reach the root. This is a bit like forwards-chaining: you’reworking from what you know (the words).

An advantage of bottom-up parsing arises in connection withparsingfragmentary input. We do not always communi-
cate in full sentences. In most top-down parsers, the parserbegins with an initial hypothesis about what the category
at the root of the parse will be, usuallyS. Obviously, with this hypothesis, a fragmentary input cannot be parsed.
Bottom-up parsing, however, is more amenable to parsing such fragments: it can work away at the words, and see
what it comes up with.

It might also be more psychologically plausible to parse bottom-up. In fact, it is likely that human parsers work in
both directions: incoming words are parsed bottom-up, but this sets up expectations (top-down hypotheses) about how
subsequent words will be parsed.

There are other ways that parsers can differ. They might workfrom left-to-right or right-to-left. Working left-to-right
would seem to have the greater plausibility. But a case can bemade for bidirectionality here too: working outwards
from important words in the sentence.

Finally, bear in mind that parsing is a search process. Therewill be choices. Depending on how we process the agenda,
we may parse breadth-first, depth-first or something else. There’s some bad news here too. Parsing using a CF-PSG is
intractable: in the worst case, the number of parse trees is exponentially related to the length of the string. (In practice,
average case behaviour on typical natural language grammars and typical input string lengths is more important, and
is not prohibitively inefficient.)

We’re going to look at a bottom-up parser which works from left-to-right and uses an agenda to manage its search.

2 Shift-Reduce Parsing

The parser we look at is by no means the best available for NLP.Its main advantage is that it is quite simple. It has
also formed the basis of a number of variants that people claim are psychologically quite plausible ways of parsing. It
is not, however, one of the more efficient parsers.

A shift-reduce parser employs two data structures: abuffer that contains the unprocessed part of the input string, and
a stackon which a parse is gradually assembled. The state of these two data structures at any point in the algorithm is
referred to as the parser’sconfiguration.

At any step, the parser can carry out one of two operations. The two operations are:

1

Shift: In shift operations the next word of the input string is movedfrom the buffer to the top of the stack: if the next
word of the input string is somew and the stack is presently[. . . X], whereX is the top of the stack, then the
stack becomes[. . . X w].

Reduce: In reduce operations, the parser finds an entry in the lexiconand replaces the word on the top of the stack by
its category. Or it finds a rule in the grammar whose right-hand side matches the constituents on the stack, one
by one, starting from the top and replaces these constituents by the category on the left-hand side of the rule: if
there is a ruleA → α and the stack contains[. . . α], whereα is the sequence of symbols on the top of the stack,
the categoriesα on the stack are popped and the left-hand side of the rule is pushed, and so the stack becomes
[. . . A].

On reaching a configuration in which the input buffer is emptyand the stack contains a single category, we have found
a parse of the string as a phrase of that category.

In the lecture, we’ll parse“Ann saw Ben”using the shift-reduce parser and using the grammar and lexicon given in the
previous lecture. From the example, you will be able to see that shift-reduce parsers work bottom-up and left-to-right.

The example will also illustrate that at some steps of its processing the parser has achoiceof operations and thus needs
to search. These decision points are referred to asconflictsand can be subcategorised as follows:

Shift-reduce conflicts: In shift-reduce conflicts, the parser configuration is such that a shift is applicable and at least
one reduce is also applicable. For example, in the configuration

[Name] 〈saw Ben〉

either the word“saw” could be shifted onto the stack or, given that the top of the stack matches the right-hand
side of the ruleNP → Name, theName on the top of the stack can be reduced toNP.

Reduce-reduce conflicts:In reduce-reduce conflicts, the parser configuration is suchthat more than one reduction is
applicable. For example, in the configuration

[NP saw] 〈Ben〉

there are two applicable reductions, one usingsaw: V and the other usingsaw: N. (Of course, a shift of“Ben”
is also possible so there is a shift-reduce conflict in this configuration too.)

Faced with a conflict, a simple shift-reduce parser will havefirst to try one of the applicable operations and eventually
return and try the others: some may lead to parses, others mayprove fruitless.

3 Definite Clause Grammars

We now present another grammar formalism, theDefinite Clause Grammar (DCG)formalism, that is much used in
computational work and that is one representative of a classof grammar formalisms, the unification-based grammar
formalisms, that form the basis of more linguistically adequate grammars than the CF-PSGs we have used up to now.

The grammar we gave in the previous lecture incorrectly saysthat the following ungrammatical strings are grammati-
cal.

(1) “This men saw Ann.”

(2) “Us died.”

2

(3) “I sees the mountain.”

(4) “Ann died Ben.”

It fails to enforce agreement betweenDets andNs; it fails to enforce agreement between subjectNPs andVPs; it fails
to allow only subjectNPs in subject position and objectNPs in other positions; and it fails to distinguish different
subcategories of verbs.

Of course, we could repair this by using more syntactic categories. For example, we could useSubjPro for words such
as“I” andObjPro for words such as“me” . Unfortunately, we would then need more rules, e.g.SubjNP → SubjPro,
S → SubjNP VP, ObjNP → ObjPro andVP → V ObjNP.

But there is a much more elegant solution. Instead of using indivisible symbols to label syntactic categories (such as
NP, VP, etc.), we use labels that have some internal structure to them.

Grammar Lexicon

S→NP(SUBJ, x, y) VP(x, y) Ann: Name(SING) I : Pro(SUBJ, 1, SING)
NP(, 3, x)→Name(x) Ben: Name(SING) me: Pro(OBJ, 1, SING)
NP(x, y, z)→Pro(x, y, z) man: N(SING) we: Pro(SUBJ, 1, PLU)
NP(, 3, x)→Det(x) Nbar(x) men: N(PLU) us: Pro(OBJ, 1, PLU)

Nbar(x)→N(x) saw: N(SING) you: Pro(, 2,)
Nbar(x)→Nbar(x) PP telescope: N(SING) he: Pro(SUBJ, 3, SING)
VP(x, y)→V(INTRANS, x, y) mountain: N(SING) him: Pro(OBJ, 3, SING)
VP(x, y)→V(TRANS, x, y) NP(OBJ, ,) the: Det() she: Pro(SUBJ, 3, SING)
VP(x, y)→VP(x, y) PP this: Det(SING) her: Pro(OBJ, 3, SING)

PP→P NP(OBJ, ,) these: Det(PLU) it : Pro(, 3, SING)
with : P them: Pro(OBJ, 3, PLU)

on: P they: Pro(SUBJ, 3, PLU)
see: V(TRANS, 1,), V(TRANS, 2,), V(TRANS, 3, PLU)

sees: V(TRANS, 3, SING)
saw: V(TRANS, ,)
die: V(INTRANS, 1,), V(INTRANS, 2,), V(INTRANS, 3, PLU)

dies: V(INTRANS, 3, SING)
died: V(INTRANS, ,)

We’ll explain the grammar in the lecture. One important point is that multiple occurrences of a variablewithin a rule
must match the same expression. However, occurrences of thesame variable namein different rulesare distinct and
need not match the same value. Computer scientists would saythat variables arelocal to rules.

Another important point is that underscore () is a variable but two underscores, even in the same rule, do not have to
be matched to the same value. We refer to underscore as theanonymous variable.

Where do such rules comes from? At present, they’re written by knowledge engineers. Algorithms for learning rules
in which the predicates are allowed to have arguments (e.g. FOIL and GOLEM) might be applicable, but research is
only just beginning.

In parsing, when carrying out matching, we now, of course, use unification. For example, if we are parsing“The men
died” and we have shifted“the” and reduced it to aDet and shifted“men” and reduce it to anN and then to anNbar,
we will be in the following configuration:

[Det() Nbar(PLU)] 〈died〉

We reduce using the ruleNP(, 3, x) → Det(x) Nbar(x). The multiple occurences ofx in this rule force the argument
of theDet andNbar to be the same, and to be the same as the third argument of theNP. Thus, our next configuration
is:

3

[NP(, 3, PLU)] 〈died〉

In the lecture, we’ll draw a parse tree for“I saw this man”.

Exercises

1. (Past exam question) Here is a Context-Free Phrase-Structure Grammar and lexicon for a fragment of the English
language:

S→NP VP this: Det, Pro airport : N
NP→Det N these: Det, Pro airports: N
NP→Pro the: Det bus: N

N→N N is : Vbe buses: N
VP→Vbe Adj are: Vbe stop: N
VP→Vbe NP busy: Adj stops: N

(a) Draw the parse tree(s), if any, that this grammar and lexicon would assign to each of the following strings
of words:

i. This bus stop is busy

ii. This is the airport bus stop

iii. This stops the airport bus

iv. These is the stop bus

(b) The grammar and lexicon above are being used to parse the string “The bus is busy”using ashift-reduce
parser. The parser is currently in the following configuration:

[NP] 〈is busy〉

The stack is on the left and the input buffer on the right.
Draw a search tree with the above configuration as its root to show how the rest of the parse proceeds.
Each node in your tree will be a new configuration, produced byeither shifting or reducing. Assume
breadth-first search.

(c) The grammar and lexicon above incorrectly parse many strings that are not grammatical sentences of
English. Rewrite the grammar as a Definite Clause Grammar (DCG) and lexicon so that the grammatical
strings still parse but the ungrammatical ones do not.

(d) Using your Definite Clause Grammar and lexicon, draw a parse tree for the following:

The buses are busy

(e) Using your Definite Clause Grammar and lexicon, draw an incomplete parse tree and explain why your
grammar does not parse the following:

The buses is busy

2. (Past exam question) Here is a Definite Clause Grammar and lexicon for a fragment of the English language.
(x, y andz are variables; is the anonymous variable.)

S(statement)→ NP(x, y) VP(finite,x, y) did : V(aux, finite, ,)
S(question)→ V(aux, finite,x, y) NP(x, y) VP(base, ,) the : Det()
NP(3,x) → Det(x) N(x) Italian : Adj
N(x) → Adj N(x) wine : N(singular)
N(x) → N() N(x) merchants : N(plural)
VP(x, y, z) → V(intrans,x, y, z) arrive : V(intrans, base,,)

4

(a) This grammar and lexicon assign two different phrase-structures to the following sentence:

“did the Italian wine merchants arrive”

Drawparse treesfor both phrase-structures.

(b) According to this grammar and lexicon the following sentences are not syntactically well-formed:

“the merchants brought the wine”
“did the merchants bring the wine”

Give the grammar rules and lexical entries that you would addso that these sentences can be parsed,
without allowing any ungrammatical strings to be parsed.

(There is an answer that requires only one new grammar rule and two new lexical entries. However, marks
are available for other answers.)

(c) The grammar tries to determine the‘force’ of speech acts based on the syntactic structure of sentences.
For example, the root of the parse tree for the sentence“the merchants arrive”is labelled S(statement).

Explain, using one or more example sentences (not necessarily sentences that use this grammar and lexi-
con), why this approach to determining speech act ‘force’ isinadequate in general.

(d) Write a brief (3 or 4 paragraph) discussion of the relationship betweennatural language understanding
andknowledge engineering.

5

