Planning and Acting in Nondeter ministic Domains

So far, we've been looking atassical planningTo repeat, classical planners make at least the follonssgmptions:

« The planner has complete and certain knowledge of (retea@nions of) the initial world state;
« each action will be executed infallibly;

« there are no other agents in the execution environmentavlictions would interfere with execution of the plan.

These are pretty unrealistic assumptions.

Non-classical plannerare ones that abandon one or more of these assumptions. Vgeiageto focus here on
abandoning the second assumption. However, the techniggi=ok at can be very helpful in domains in which the
first and third assumptions also do not pertain.

There are two main families of techniques, and which you &dog@ when depends on how much indeterminacy there
is in the domain.

Bounded indeterminacy: Actions can have unpredictable effects, but the possiliéetsfare known and sufficiently
few in number that they can be listed in the operator. For gtenthe possible outcomes of tossing a coin
areHeadsor Tails. To cope with bounded indeterminacy, the agent can makeretipda works for all possible
outcomes. The main technique hereamditional planning

Unbounded indeterminacy: Actions can have unpredictable effects, and the full sebskible effects is either un-
known or too large to be enumerated in an operator. For examnany of the actions that you take when driving
a car exhibit unbounded indeterminacy. The main techniheesareexecution monitoringndreplanning

Of course, some domains have both kinds of indeterminaay,sanyou would need to integrate both conditional
planning and execution monitoring & replanning into a singystem.

1 Conditional Planning

Conditional planningalso known agontingency planningleals with bounded indeterminacy by allowing operators
to havedisjunctive effectand building plans that contain different branches foredéht eventualities. This implies
also that the plan contaisensing actions/hich, when executed, enable the agent to decide which brafitbe plan

to follow.

Here is the specification of a coin tossing operator withudisjive effects:

Op(ACTION: tossCoing),
PRECOND: haveCoinf),
EFFECT: landsHeads) V landsTailsf))

But we can also use disjunctive effects for operators thghtrgo wrong: one set of effects will be when the operator
executes correctly (e.g. the block is now no longer on tomottaer block; it is now in the robot’s hand) and the other
set of effects will be for when the operator is executed cilynge.g. the block is no longer on top of another block,
but it isn’t in the robot’s hand either, since it was droppeat] so now it is on the table):

Op(ACTION: unstackg, y),
PRECOND: ong,y) A clear@r) A armempty,
EFFECT: —on(z, y) A clearg) A
((—armemptyA —clearg) A holding(z)) vV
ontable()))

We can also use operators with disjunctive effects for dpesahat discover information about the world. For example
if we execute an operator that tries turning a door handleyilvé&now whether the door is locked or not:

Op(ACTION: checkDoorf),
PRECOND: atDoorf) A —knowlf(locked(r)),
EFFECT: know(lockedf)) V know(-locked()))

(The observant amongst you will note that the above is niatlstfirst-order predicate logic since it allows wffs to be
arguments of predicate symbols. But, it serves our purpeses an illustration of a disjunctive effect.)

Conditional plans contain conditional steps. We will wthiese using the syntaktestthen PlanAelse PlanB, where
testis a Boolean function that tests the state of the world. Fangle, we might have a plan that comprises two steps:
a step for tossing coin a, and then a conditional step:

tossCoin(a)
if landsHeads(ahen goRight()else goLeft()

By nesting conditional steps, plans become trees.
We won't look at a conditional planning algorithm. Insteaall content ourselves with a few further observations.

A single plan will now have multiple paths through it and,icgly, a plan is not finished unlesal paths lead to
satisfaction of the goal. In other words, a conditional ptanst reach a goal state regardless of which outcomes
actually occur.

But, this leads to a problem. There can be an ‘explosion’ tigg A sequence of disjunctive operators, each having
just two alternative effects, giveé$ paths.) We cannot in fact plan for every eventuality. Indt@ee must focus on the
most likely eventualities and plan for these. This requines we use probability information to constrain the plaugni
algorithm.

2 Execution Monitoring and Replanning

Imagine that an agent has built a plan using any of the idestsith have discussed so far (partial-order planning,
hierarchical planning, conditional planning, or some migtof these). How can it now cope with unbounded indeter-
minacy?

While executing the plan, the agent can also engagsétution monitoringo determine whether the current state
of the world is as the plan says it should be. Why might the &vodt be in the state that the plan says it should
be? Perhaps execution of the previous action did not havexfiected effects because it was fumbled; or perhaps
some other agent has been executing actions that interfdr@ur agent’s. In fact, there are two kinds of execution
monitoring:

« Action monitoring:Before executing the next step, the agent uses its sensongté that the preconditions of
that step are, indeed, true (as the plan expects them to be).

» Plan monitoring: Before executing the next step, the agent uses its sensohetk that the preconditions for
the entire remaining plan are true (i.e. it checks all prelons, except those that are achieved by another
remaining step in the plan). (Of course, in practice, youtdeant your agent to spend too much time sensing
and checking preconditions. You have to check just thodeatieaimportant and readily-checked.)

Replanningoccurs when something goes wrong. The agent invokes thegiagain to come up with a revised plan
to reach the goal. Often, the most efficient way to come up thighrevised plan is teepair the old plan, i.e. to find a
way from the current, unexpected state of the world back theglan.

3 Continuous Planning

In execution monitoring and replanning, there is a tightéegration of planning and execution. Rather than looking
further at execution monitoring and replanning, we’'ll loakan even more general approach, knowe@stinuous
planning It has a tight integration of planning and execution. Itsfdeengage in identifiably separate planning
episodes. It can begin execution of partial plans, befoeg tire complete. And it can continuously formulate new
goals, which means that it's plan may never be complete.

We can readily extend POP to be a continuous plahnathen we extended POP for hierarchical planning, all we
needed to do was add a new way of refining plans. And the sameeiiére. The algorithm is just a loop, and each
time round the loop we pick one of the plan refinement opesatbwhich there are now 10 (excluding decomposition
of abstract operators):

Make the initial plan, i.e. the one that contains only 8tart andFinish steps.
whiletrue
{ Choose one of the following:

1. Achieve an unachieved precondition by adding a new step.

2. Achieve an unachieved precondition using an existing. ste

3. Protect a link by promotion.

4. Protect a link by demotion.

5. New goal:Add a new goal to th€&inish step.

6. Unsupported linkif there is a causal linlStart — a, wherec is
no longer true irStart, then remove the link. This prevents us
from executing an action whose preconditions are false.

7. Extending a causal linkif s; — sy, but there is an earlier step < s;
which could also achieve conditienwithout introducing a new conflict,
then remove; — s; and inserts; —— sy
(This refinement allows us to take advantage of serendipigoants.)

8. Redundant actiontf an actiona is the source of no causal links,
then remove: from the plan. It serves no purpose.

9. Execute an unexecuted actidhan actiona (other tharFinish)
has its preconditions satisfied Byart, has no actions
(other tharStart) ordered before it and conflicts with no causal
links, then remove from the plan and execute it.

10. Unnecessary historical goalf there are no unachieved preconditions
and no actions (other thatart andFinish), then we have
achieved the current goal set. Remove the goals, and awaibmes.

Here’s a running example. To make the example more manageaélwill allow ourselves to useraoveoperator,
which moves a block to another. This avoids the need to segamanstack and stack, so it makes the example less
cluttered. For the same reasons, we’re also going to omitafition of thearmemptyprecondition.

Here is the operator:

Op(ACTION: moveg, z),
PRECOND: cleat() A clearg) A on(z, y),
EFFECT: ong, z) A —clearg) A clearfy) A —on(z, y))

1This formulation of continuous planning, and the example, lzased on section 12.6 in S.Russell and P.Nowitficial Intelligence: A
Modern Approact{2nd edn.), Prentice-Hall, 2003.

Suppose the start state is like this:
[a] [e] [f] [g

The agent starts to plan. We'll assume that it constructédit@ving complete plan, without doing any execution:

Suppose the goal n(c, d) A on(d, b).

ontable(a)
on(b, e ______---=on(c,
ongc f))—/f—""”‘”’"’ - cle(ar(c) MOVE(c, d))-. _

on(d ,g) __---="7___» clear(d) ~on(c

clear(c) - *“‘ (d) T
clear(dy - on o
clear(b) .~~~ clear(d) 'V|OVE(d b -

"~~~ clear(b)

The agent is about to execute the first step of the plan. Botedfcan even choose this step, another agent intervenes!
The other agent (quite helpfully in this case) moves d onfbhe world is now like this:

d]
N

Our agent perceives this. It recognises ttlatr(b) andon(d, g) are no longer true in the current state, so it updates
the effects of théStart step. This also means that causal listart cleart) movéd, b) andStart onle.g) movéd, b) are

invalid so they are removed (se®supported linkn the algorithm):

ontable(a)
on(b, e)

__ - —-=on(c,
on(e, f)------TTTTTT cle(ar(c)\
cle(ar(gg /'_/,,::/ » clear(d)

““~on(c, d _ -
ZonG. oy Fmsh)

clear(c) -~ /o‘r{((‘i/ » et
clear(dy - -
clear(g) ~ clear(d) MOVE(d, b)) *

clear(b)

The plan is now incomplete. It now has two unachieved preitiond, on(d, y) andclear(b).

movéd, b) was being used to achieve gaai(d, b). But we now notice that, as a result of the ‘helpful’ integfiece of
the other agent, an earlier step in the plan (in this c8t}) can achieve this goal. So we replaneved, b)) —> ond2)

Finish by Start ML) Einish (seeExtending a causal linkn the algorithm).

And we can now remove actianovéd, b) from the plan entirely (seRedundant actiom the algorithm):

ontable(a)
on(b, e)

_____---»on(cf)
on(c, f)--------- __» clear(c) MOVE(c, d))-.
on(d,b)------________ __----_____» clear(d) "~ on(c, d) —
(st Jolear(@) - -~ = on(d, b)__Finish

clear(cy -~~~ __---~

clear(dy =~
clear(g)

This time round the loop, the agent realises tatvéc, d) can be executedEkecute an unexecuted actionthe
algorithm). The step will be deleted from the plan.

Unfortunately, the agent is clumsy. While executing the enof/c to d, it drops c onto a, instead of d. The current
state is therefore now as follows:

So the plan now looks like this:

ontable(a)

on(b, e)

on(c, a)
on(d,b)-----______ .

,d
[sart Jolear R e e O i)

clear(c)
clear(d)
clear(g)
The plan is therfore still incomplete: there remains an ti@@d preconditioron(c, d).

So the agent does some more planning (using goal achieveasdntnormal POP), and obtains:

ontable(a)

on(b, e) _____.----=on(c,a

on(c,ay-------"""""° __» clear(c) MOVE(c, d))-.

on(d,by-—----_________---"""__+ clear(d) “~on(c, d) —
(st Jalear(y T ~--------= on(d,b)__Finish]

clear(cy -~~~ __---~
clear(dy =~
clear(g)

Again,movéc, d) is ready to be executed (sE&ecute an unexecuted actjoSuppose this time it works correctly, so
the new state of the world is:

The action is deleted from the plan, and the results of sgribworld are used to update the effects of3tert step,
and these now directly achieve the preconditionBinfsh:

ontable(a)

on(b, e)

on(c,d)---------__ N

on(d,b)-----______ T ~--------= on(c, d —
Csen e’ e R

clear(c

clear(a)

clear(g)

We can now delete the two goal conditions (§emecessary historical goah the algorithm). And we are done. Of
course, in practice, new goals are always being formulatddhdded to the preconditionsBinish (seeNew goalin
the algorithm), and so this process continues indefinitely.

The system we have just described is very flexible. And yousmmhow extensible it is: it is easy to add new
ideas, simply by incorporating new plan refinement opesat&or example, one nice idea is to bring in the idea of
hierarchical decomposition. The idea might be to use attstgerators whenever possible and to defer decomposition
so that it is only done immediately prior to execution timeneThigh level plan ensures that we have done enough
thinking ahead. But deferral of decomposition means thabmhe come up with detailed actions when we know what
the world is actually like.

