Hierarchical Planning

One of the main ways of coping with complexity is hierarchigbstraction. You can see this idea in operation
from military command structures to well-written softwarkh an abstraction hierarchy, a problem or task at one
level is reduced to amall number of subproblems or tasks at the next level. All going,wiee cost of arranging
subproblems or subtasks so that they achieve the desiect=tif their parent problem or task will be small. This is
the computational benefit of abstraction.

In this lecture, we look at ways of bringing more abstractigo A.I. planning.

1 Hierarchical Approximation

Hierarchical approximation is an early form of hierarchical planning.

In hierarchical approximation, we assigniticality levelsto STRIPS preconditions. These are simply numbers which
signify how critical a precondition is: critical ones wilkually be ones that are harder to achieve. For example, we
might assign criticality levels as follows:

Op(ACTION: stackg, y),
PRECOND: 1: holdingf)
2: clearf))
EFFECT: —clearfy) A —holding@) A
armemptyA on(z, y) A clear@))

Op(ACTION: unstackg, v),
PRECOND: 0: armempty
2: clear()
3: on(x, y)
EFFECT: —on(z, y) A ~armemptyA
—clearg) A holding(z) A clear())

We revise the POP algorithm to take these numbers into atc@vmarrange the search so that we first build a plan
in which only preconditions of highest criticality are aghéd. Only once this has been built do we successively deal
with preconditions of lower criticality levels.

In terms of our example, we would first build a plan in which gmy unachieved preconditions that we solve would
be the ones whose criticality level is 3. Of course, the tdsuiot necessarily a complete plan: some (even many) of
the preconditions (all those with criticality 3) will remain unachieved. Once this has been done, we thédetad
preconditions at level 2. And so on, until a complete planiesen built.

If you look back at the description of POP, you will see thathirog was said about the order in which unachieved
preconditions would be achieved. All we said was: since édldhieved preconditions must eventually be achieved,
they are not to be treated as alternatives. Now, using alitty{devels, we have a way of deciding the order in which to

tackle them.

This is a quite crude approach to providing control inforimato the planning algorithm, and it suffers the limitation
that assignment of static criticality numbers does not ceflee fact that criticality might depend on context.

2 Hierarchical Decomposition

Of far greater significance, however, is another form ofdmehical planning, known dserarchical decomposition.
In hierarchical decomposition, there are two kinds of ardiand, correspondingly, two kinds of operators.

* Primitive actions are ones the robot can directly execute. They are specifind tmormal’ STRIPS operators.

 Abstract actions are ones that are too high-level to be immediately exectitey; need to be decomposed into
lower-level actions. They are specified usialgstract operators. Abstract operators are like macros. Each
abstract operator, as well as specifying preconditionsedfiedts, also specifies how it can be decomposed into
a precompiled plan of lower-level steps. These lower-lsteghs might themselves be abstract actions, in which
case they will require further decomposition. Or they migéiprimitive actions.

In planning, the process of decomposition will continuglwrtly primitive actions remain in the plan.

The resulting plan, with all its levels of decomposition,sismetimes called &ierarchical task network or HTN.
Planners that generate plans purely by decomposition deel¢4TN planners.

However, we'll present some of the details of a planner teatrdessly integrates partial-order planning (based on
POP from the previous lecture) and hierarchical decomipogjbased on HTN planning).

2.1 Abstract Operators

First, we look at how to represent abstract actions usingadiperators.

Recall that our robot is capable of executing four (prin@}iactions: stacking, unstacking, picking up and putting
down. Consider the action @fansferring a block from one non-empty stack of blocks to another. Thimisan action
that the robot can directly execute. In terms of primitivé@ts, it involves unstacking the block and stacking it agai
at its destination. This is not a killer example, but it doksvaus to see what a (simple) abstract operator would look
like.

Here it is pictorially:

START

on(x, y) & clear(x) & armempty & clear(z)

Tl \o\n\(x, y), clear(x), armempty

-

on(x, y) & clear(x) & : clear(z).. | _INSTACKX.Y)
armempty & clear(z) . 7
RANSFER(X, y, Z ’

: ! holding(x)
on(x, z) & clear(y) decomposes to : 4
clear(y).,”’ STACK(, 2)
g _--"an(x, 2)
................. WA
on(x, z) & clear(y)
FINISH

Here it is more formally:

Op(ACTION: transferg, y, 2),
PRECOND: ong, y) A clearfr) A clear¢) A armempty,
PRIMARY
EFFECT: ong, z),
SECONDARY
EFFECT: cleary),
DECOMP: Plan(STEPS: S1: Op(ACTION: Start,

EFFECT: ong,y) A clear@) A
clear@) A armempty),
S2: Op(ACTION: unstackf, y),
PRECOND: ong,y) A clear@) A armempty,
EFFECT: —on(z,y) A ~armemptyA
—clear) A holding() A clear()),
S3: Op(ACTION: stackg, z),
PRECOND: clear) A holding(),
EFFECT: —clearg) A —holding@) A
armemptyA on(z, z) A clearg)),
S4: Op(ACTION: Finish,
PRECOND: ong, z) A clear())},
ORDERINGS:{ S1<52,51< 53,51 < 54,52 < 53,52 < 54,53 < S4},

LINKS: { 5150 g9 51 9% go g1 TP g g1 @) g3,
holding(z) clear(y) on(z,z)

52 T—"783,582 "—" 54,53 =57 54}))
So we have an abstract actiargnsfer, for which there is a precompiled plan (what this action deposes into).

« The preconditions of theansfer operator are thexternal preconditions of its decomposition. That is, for any
operator in the decomposition, external precondition®ags that the plan itself does not make true: within the
decomposed plan, it is only tf&tart operator that makes them true.

« Theexternal effects of thetransfer operator are the effects of all the operators in the planateahot negated by
other later operators. But we want to distinguish two kinfieffect:

— Primary effects: These are the external effects that you would use this abstperator for. If your goal
was to getr ontoz, then you might use this operator.

— Secondary effects: These are additional, incidental external effects of tla@plf your goal was to clear a
block, you probably wouldn’t want to do it by using this opera There are easier ways to clear a block.

« The decomposition of thieansfer operator is a POP plan. Let me repeat two points which arergeneral,
but not illustrated by this example.

— First, note that the POP plan may itself contain furtherralesgctions, which would then themselves need
to be decomposed. In this example, it only contains primiéigtions.

— Second, POP plans are, of course, in general partiallyreddd his example is, in fact, totally ordered.

In fact, I've simplified!

It is possible to have an operator with more than one decoitipsFor example, you might have an abstract action
calledtravel CorkDublin(). There could be several precompiled plans for achievirg thvolving different modes of
transport, for example. The different decompositions méagcth have different external preconditions and external
effects. For example, one decomposition might involve traiVel, for which the preconditions might be to be in
Cork and to have 50 euro; another might involve flying, for ethihe preconditions might be to be in Cork, to have
150 euro and to have less than 20kg of luggage. The preconditithe abstract operator as a whole would be the
intersection of the external preconditions of each decomposition. Sirtyil the effects of the abstract operator would
be the intersection of the external effects of each decoitipos

2.2 Modifying POP for Abstract Operators

In high-level terms, modifying POP is easy. We simply extdrellist of plan refinement operators. Where previously,
there were four ways to refine a plan, now there are five, as suised below:

Make the initial plan, i.e. the one that contains only 8tart andFinish steps.
while the plan is not a solution plan
{ Choose one of the following:
1. Achieve an unachieved precondition by adding a new step
(using either a primitive or abstract operator)
2. Achieve an unachieved precondition using an existing ste
(whether it be primitive or abstract)
3. Protect a link by promotian
4. Protect a link by demotion
5. Choose an abstract action in the plan, choose one of iht®gasitions
and replace the abstract action with the decomposition
(suitably instantiated through unification and suitablpked up with
new ordering and causal links).

So, imagine that we are faced with the same planning prokh@twe had in the previous lecture. This is shown
leftmost. Maybe we then choose to use the abstracsfer operator to move c to b. This is shown in the centre.
And then we decompose tl@nsfer operator, i.e. we replace the single step by its precompikal This is sketched
rightmost:

smRr) (swar)

clear(b) & clear(c) & clear(b) & clear(c) & clear(b) & clear(c) &
on(c, a) & ontable(a) & on(c, a) & ontable(a) & on(c, a) & ontable(a) &
ontable(b) & armempty ontable(b) & armempty ontable(b) & armempty lear(©)
AN on(c, a), clear(c),
*~-._on(c, a), clear(c) ‘~~,\(a}|’mzempety

__ clear(b), armempty . e

"~ "~ [UNSTACK(c, a)

on(c, a) & clear(c) &

armempty & clear(b) clear(b) " holding(c)
(TRANSFER(c, a,) \,

on(c/, /b) & clear(a)

_.-==""on(c, b) —on(c, b)

- -

on(c, b) & on(a, c) on(c, b) & on(a, ¢) on(c, b) &‘o/n(a, c)

CEmsn) (e)

There are some subtleties. And here’s an overview of them:

* Suppose you are replacing an abstract operator by its dexsition. Suppose that one of the steps in the
decomposition is the same as one of the steps in the rest pfahe For example, suppose the decomposition
(after unification and instantiation) contains a stegtack(c,) and and suppose that the rest of the plan contains
this step already. Now you have a choice (and this implieschgalt may be possible teuse the existing step,
instead of inserting a secomdstack(c, a) step.

« How do you hook up ordering constraints? SuppSse a, wherea was the original abstract operator. The
simplest solution is to inse§ < s for everys in the decomposition. This can be achieved by replacingyever
constraint of the fornStart < s in the decomposition b < s. A similar story applies to constraints of the
forma < S: this time you replace < Finish by s < S. In fact, what | have said here sometimes leads to more
ordering constraints than are strictly necessary. It mighthat a step had to precede the abstract operator, but
does not need to precede every step within the decompasg@me work has gone on to try to deal with this.

« How do you hook up the causal constraints? Supgbsé- a was a causal link in the original plan, where
again is an abstract operator. A§d-— s wherever there is a linBtart — s in the decomposition. A similar
story applies to constraints of the form-— S this time you replace — Finish by s —— .

« There is now the potential for new conflicts to have arisen.y®u need to check for clobbering between the
newly-added steps of the decomposition and the rest of ire flesolve any threats by promotion or demotion,
as usual.

3 Closing Remarks

HTN Planning is very successful in practice, especiallystems with human users. So the integration of partialtorde
planning and HTN planning is very promising.

There is also the obvious potential to integrate learninfierfa plan has been constructed, it makes sense to create
an abstract operator from that plan and store it for futuee &sr example, suppose you have built a plan to solve the

L !
rfin afin

Initial state Goal state

Your plan probably involves unstacking a from c, then pgténon the table, unstacking b from d, then stacking b on
¢, then picking a up from the table and stacking it on d. What want to do isgeneralise this plan, essentially by
consistently substituting variables for constants soithtw refers to unstacking from v, puttingu on the table, etc,
etc.

The resulting abstract operator can then be used in futaresptheneveswapping is needed.

(I can’t stop myself from mentioning that case-based reiagps relevant too. Remember CBR is a way of allowing
reuse of previous problem-solving episodes. But theregme to say more.)

Exercise (Based on past exam question)

Assume that a household robot has the following repertdi8T&RIPS-style operators:

Op(ACTION: buyFish,
EFFECT: haveFish)
Op(ACTION: washHands,
EFFECT: handsClean)
Op(ACTION: layTable,
PRECOND: handsClean,
EFFECT: tableLaid)
Op(ACTION: bakePotatoes,
PRECOND: havePotatogsovenHot,
EFFECT: -havePotatoes haveBakedPotatoes)
Op(ACTION: heatOven,
EFFECT: ovenHot)
Op(ACTION: filletFish,
PRECOND: haveFish handsClean,
EFFECT: -haveFishn —handsCleam haveBonedFish
Op(ACTION: bakeFish,
PRECOND: ovenHot haveBonedFish,
EFFECT: -haveBonedFish haveBakedFish)

There is also aabstract operator, cookFish. Here is its full specification, including its detposition:

Op(ACTION: cookFish,
PRECOND: haveFish handsClean,
EFFECT:. —haveFish\ haveBakedFish,
DECOMP: Plan(STEPS:S; : Op(ACTION: Start,
EFFECT: haveFish handsClean),
Sy : Op(ACTION: filletFish,
PRECOND: haveFish handsClean,
EFFECT: —haveFisth\ —handsCleam
haveBonedFish),
S5 : Op(ACTION: heatOven,
EFFECT: ovenHot),
S; : Op(ACTION: bakeFish,
PRECOND: ovenHot haveBonedFish,
EFFECT: -haveBonedFish haveBakedFish)
S5 : Op(ACTION: Finish,
PRECOND: haveBakedFish)
ORDERINGS:{ S; < 52,51 < 55,51 < 54,51 < S5,
So < Sy, S2 < S5, 53 <S4, 53 <S5, 5 < 55},
LINKS: { S haveFishS,, S; handsCleas,,
S, haveBonedFisl,, S; ovenHotS,,

Sy haveBakedFisHs}))

The diagram shows an incomplete plan that could be built BYyP@P planner.

» Redraw this plan, replacing the cookFish operator by itodgosition. You will need to incorporate the steps
of the decomposition into the plan and install appropriateedng constraints and causal linksdift: In the
exam, students lost marks by not taking into account all tintleties covered in section 2.2.)

« Explainin detail what you have done, especially
made, and the reasons for your decisiofBn(; In th

heatOven

ovenHot handsClean

‘ havéPotatoeshalndsmean
ovenHot, .

W

bakePotatoes layTable

- havePotatoes tableLaid = haveFisQ/_
haveBakedPotatoes ~. . haveBakedFish
e ~.tableLaid -
haveBakedPotatoes - - _ _ _ : L -~ haveBakedFish
IR\

tableLaidA haveBak

highlighting any choices yoa faced, the decisions you
e exam, students lost marks by not writing enough.)

— = order constraint

C .
fffffff = order constraint and
causal link for

avePotatoes o
_ preconditionc
‘ buyFish ‘ ‘ WashHands‘
haveFish handsClean

h:‘:lveFish/ _-handsCle

cookFish

edPotatoeshaveBakedFish

Finish

