
POP: A Partial-Order Planner

In this lecture, we look at the operation of one particular partial-order planner, called POP. POP is a regression planner;
it uses problem decomposition; it searches plan space rather than state space; it build partially-ordered plans; and it
operates by the principle of least-commitment.

In our description, we’ll neglect some of the fine details of the algorithm (e.g. variable instantiation) in order to gain
greater clarity.

1 POP plans

We have to say what a plan looks like in POP. We are dealing withpartially-ordered steps so we must give ourselves
the flexibility to have steps that are unordered with respectto each other. And, we are searching plan-space instead of
state space, so we must have the ability to represent unfinished plans that get refined as planning proceeds.

A plan in POP (whether it be a finished one or an unfinished one) comprises:

• A set of plansteps. Each of these is a STRIPS operator, but with the variables instantiated.

• A set ofordering constraints: Si ≺ Sj means stepSi must occur sometime beforeSj (not necessarily immedi-
ately before).

• A set ofcausal links: Si
c

−→ Sj means stepSi achieves preconditionc of stepSj .

So, it comprises actions (steps) with constraints (for ordering and causality) on them.

The algorithm needs to start off with aninitial plan. This is an unfinished plan, which we will refine until we reacha
solution plan.

The initial plan comprises two dummy steps, calledStart andFinish. Start is a step with no preconditions, only
effects: the effects are the start state of the world.Finish is a step with no effects, only preconditions: the preconditions
are the goal.

By way of an example, consider this start state and goal state:

Initial state Goal state

a b

c

a

b

c

These would be represented in POP as the following initial plan:

Plan(STEPS:{S1: Op(ACTION: Start,
EFFECT: clear(b)∧ clear(c)∧

on(c, a)∧ ontable(a)∧
ontable(b)∧ armempty),

S2: Op(ACTION: Finish,
PRECOND: on(c, b)∧ on(a, c))},

ORDERINGS: {S1≺ S2},
LINKS: {})

1

This initial plan is refined using POP’splan refinement operators. As we apply them, they will take us from an
unfinished plan to a less and less unfinished plan, and ultimately to a solution plan. There are four operators, falling
into two groups:

• Goal achievement operators

– Add new step: Add a new stepSi which has an effectc that can achieve an as yet unachieved precondition
of an existing stepSj . Also add the following constraints:Si ≺ Sj andSi

c
−→ Sj andStart ≺ Si ≺

Finish.

– Reuse existing step:Use an effectc of an existing stepSi to achieve an as yet unachieved precondition of
another existing stepSj . And add just two constraints:Si ≺ Sj andSi

c
−→ Sj .

• Causal links must beprotectedfrom threats, i.e. steps that delete (or negate orclobber) the protected condition.
If S threatens linkSi

c
−→ Sj :

– Promote: add the constraintS ≺ Si; or

– Demote: add the constraintSj ≺ S

The goal achievement operators ought to be obvious enough. They find preconditions of steps in the unfinished plan
that are not yet achieved. The two goal achievement operators remedy this either by adding a new step whose effect
achieves the precondition, or by exploiting one of the effects of a step that is already in the plan.

The promotion and demotion operators may be less clear. Why are these needed? POP uses problem-decomposition:
faced with a conjunctive precondition, it uses goal achievement on each conjunct separately. But, as we know, this
brings the risk that the steps we add when achieving one part of a precondition might interfere with the achievement
of another precondition. And the idea of promotion and demotion is to add ordering constraints so that the step cannot
interfere with the achievement of the precondition.

Finally, we have to be able to recognise when we have reached asolution plan: a finished plan.

A solution plan is one in which:

• every precondition of every step is achieved by the effect of some other step;

• all possible clobberers have been suitably demoted or promoted; and

• there are no contradictions in the ordering constraints, e.g. disallowed isSi ≺ Sj andSj ≺ Si; also disallowed
is Si ≺ Sj , Sj ≺ Sk andSk ≺ Si.

Note that solutions may still be partially-ordered. This retains flexibility for as long as possible. Only immediately
prior to execution will the plan needlinearising, i.e. the imposition of arbitrary ordering constraints on steps that are
not yet ordered. (In fact, if there’s more than one agent, or if there’s a single agent but it is capable of multitasking,
then some linearisation can be avoided: steps can be carriedout in parallel.)

2 The POP algorithm

In essence, the POP algorithm is the following:

2

Make the initial plan, i.e. the one that contains only theStart andFinish steps.
while the plan is not a solution plan
{ Choose one of the following:

1. Achieve an unachieved precondition by adding a new step;
2. Achieve an unachieved precondition using an existing step;
3. Protect a link by promotion;
4. Protect a link by demotion;

}

But what the above fails to show is that planning involves search. At certain points in the algorithm, the planner will
be faced with choices (alternative ways of refining the current unfinished plan). POP must try one of them but have
the option of returning to explore the others.

There are basically two main ‘choice points’ in the algorithm:

• In goal achievement, a conditionc might be achievable by any one of a number of new steps and/or existing
steps. For each way of achievingc, a new version of the plan must be created and placed on the agenda.

Question.A conditionc might be achievable by new steps or existing steps. When placing these alternatives on
the agenda, why might we arrange for the latter to come off theagenda before the former?

• When resolving threats, POP must choose between demotion and promotion.

(Some people think that the choice of which precondition to achieve next also gives rise to search. But, in fact, all
preconditions must eventually be achieved, and so these aren’t alternatives. The choice can be made irrevocably.)

Provided your implementation of POP uses a complete and optimal search strategy, then POP itself is complete and
optimal.

However, the number of choices at each point can still be highand the unfinished plans that we store on the agenda
can be quite large data structures, so we typically abandon completeness/optimality to keep time and space more
manageable. Search strategies that are more like depth-first search might be preferable. And we might use heuristics
to order alternatives or even to prune the agenda.

In the lecture, we will dry-run the POP algorithm.

Afterwards, convince yourself that POP is a regression planner, that it uses problem decomposition, that it searches
plan space, that it build partially-ordered plans and that it operates by the principle of least commitment.

3

START

clear(b) & clear(c) &

ontable(b) & armempty
on(c, a) & ontable(a) &

UNSTACK(C, A)

¬on(c, a) & ¬armempty &
¬clear(c) & holding(c) &

clear(a)

on(c, a) & clear(c) & armempty

STACK(C, B)

¬clear(b) & ¬holding(c) &
armempty & on(c, b) &

clear(c)

clear(b) & holding(c)

clear(c) & holding(a)

clear(a) & ontable(a) & armempty

PICKUP(A)

¬ontable(a) & ¬armempty &
¬clear(a) & holding(a)

STACK(C, A)

¬clear(c) & ¬holding(a) &
armempty & on(a, c) &

clear(a)

FINISH

on(c, b) & on(a, c)

on(c,a), clear(c), armempty

clear(c) ontable(a)

clear(b)

clear(a)

holding(a)

armempty

holding(c)

on(a, c)

on(c, b)

4

Exercise (Past exam question)

1. An A.I. planner operates in a simplified Blocks World. The only operators in its repertoire move a blockx from
the table to another blocky:

Op(ACTION: FromTable(x, y),
PRECOND: onTable(x) ∧ clear(x) ∧ clear(y),
EFFECT: ¬onTable(x) ∧ ¬clear(y) ∧ on(x, y))

and move a blockx from blocky to the table:

Op(ACTION: ToTable(x, y),
PRECOND: on(x, y) ∧ clear(x),
EFFECT: ¬on(x, y) ∧ clear(y) ∧ onTable(x))

Here is an incomplete plan of the kind that could be built by the POP planner covered in lectures:

¬on(a, b) ∧ clear(b) ∧ onTable(a)

Start

Finish

onTable(b)
clear(a) on(a, b) ∧ clear(a)

clear(a)
on(a, b)

clear(b)

ToTable(a, b)

FromTable(b, a)

on(b, a)

on(b, a) ∧ on(c, b)

order constraint

c

on(a, b) ∧ clear(a) ∧ onTable(b) ∧ onTable(c) ∧ clear(c)

onTable(b) ∧ clear(b) ∧ clear(a)

¬onTable(b) ∧ ¬clear(a) ∧ on(b, a)

preconditionc

order constraint and
causal link for

(a) Give thestart world state andgoalof this plan.

5

(b) Copy this plan onto your answer sheet. (Copy just the boxes and arrows; there is no need to copy the
preconditions & effects.)

• Choose an unachieved precondition in the plan.

• Add a new stepto the plan to achieve your chosen precondition. Draw it ontoyour copy of the
diagram. Include its preconditions & effects, all order constraints and all causal links.

• If your new step threatened any existing causal links, thenstate which link(s) were threatened; state
what extra ordering constraint(s) you added to protect the threatened link(s); state whether what you
did was an example of promotion or demotion; and briefly explain why the extra ordering constraint(s)
fix the plan.

(c) Is the plan now complete? Explain your answer.

2. WriteSTRIPS operatorsthat would enable a planner to build plans that it could give to photocopier repair robots.

Use the following predicate symbols:

copier(x) : x is a photocopier
robot(x) : x is a robot

noToner(x) : x has no toner
hasToner(x) : x has toner

hasPaper(x, n) : x hasn sheets of paper
at(x, y) : x is aty

You can also use the predicates<,≤, >,≥ and=, the function symbols+ and− and the constant symbols 0
and 1 if you wish, all with their usual meanings from arithmetic. (Hint: many students lost marks in the exam
by forgetting about the delete-list, i.e. the negated effects.)

You should write the following three operators:

• replaceToner(x, y): To replace the toner, the copier (y) must be out of toner, a robot (x) must be at the
copier and it must have some toner, all of which it puts into the copier.

• insertPaper(x, y, n): To putn sheets of paper into the copier (y), a robot (x) must be at the copier and
it must have at leastn sheets of paper. (You should assume that the copier has no maximum amount of
paper.)

• makeCopy(x, y): To make a copy (using up one sheet of paper), a robot (x) must be at a copier (y) that has
toner and that has at least one sheet of paper.

6

