POP: A Partial-Order Planner

In this lecture, we look at the operation of one particulatiphorder planner, called POP. POP is a regression ptanne
it uses problem decomposition; it searches plan spacerréithe state space; it build partially-ordered plans; and it
operates by the principle of least-commitment.

In our description, we’ll neglect some of the fine detailshe tlgorithm (e.g. variable instantiation) in order to gain
greater clarity.

1 POP plans

We have to say what a plan looks like in POP. We are dealing péttially-ordered steps so we must give ourselves

the flexibility to have steps that are unordered with respreeich other. And, we are searching plan-space instead of

state space, so we must have the ability to represent urdohjglans that get refined as planning proceeds.

A plan in POP (whether it be a finished one or an unfinished oom)pcises:

« A set of plansteps Each of these is a STRIPS operator, but with the variabktamtiated.

« A set ofordering constraintsS; < S; means ste; must occur sometime befofg (not necessarily immedi-
ately before).

« Aset ofcausal links S; — S; means stefs; achieves preconditionof stepsS;.

So, it comprises actions (steps) with constraints (for ongeand causality) on them.

The algorithm needs to start off with amitial plan. This is an unfinished plan, which we will refine until we reach
solution plan.

The initial plan comprises two dummy steps, cal®@drt andFinish. Start is a step with no preconditions, only
effects: the effects are the start state of the wdfldish is a step with no effects, only preconditions: the precoods
are the goal.

By way of an example, consider this start state and goal:state

s

Initial state Goal state

These would be represented in POP as the following initehpl

Plan(STEPS{S1: Op(ACTION: Start,

EFFECT: clear(b)\ clear(c)A\
on(c, a)A ontable(a\
ontable(b)A armempty),

S2: Op(ACTION: Finish,

PRECOND: on(c, bj on(a, ¢)},

ORDERINGS: {S1< S2},
LINKS: {})

This initial plan is refined using POPjslan refinement operatorsAs we apply them, they will take us from an
unfinished plan to a less and less unfinished plan, and uilynat a solution plan. There are four operators, falling
into two groups:

» Goal achievement operators

— Add new stepAdd a new stef; which has an effeat that can achieve an as yet unachieved precondition
of an existing stefs;. Also add the following constraintss; < S; andS; LN S; andStart < S; <
Finish.

— Reuse existing stefuise an effect of an existing ste; to achieve an as yet unachieved precondition of
another existing stef;. And add just two constraintss; < S; andS; — S;.

* Causal links must bprotectedfrom threats i.e. steps that delete (or negatectabber) the protected condition.
If S threatens linkS; — S

— Promote add the constraint < .S;; or
— Demote add the constraing; < S

The goal achievement operators ought to be obvious enouwty find preconditions of steps in the unfinished plan
that are not yet achieved. The two goal achievement opsregaredy this either by adding a new step whose effect
achieves the precondition, or by exploiting one of the e¢ffec a step that is already in the plan.

The promotion and demotion operators may be less clear. \Mhthase needed? POP uses problem-decomposition:
faced with a conjunctive precondition, it uses goal achieet on each conjunct separately. But, as we know, this
brings the risk that the steps we add when achieving one parprecondition might interfere with the achievement
of another precondition. And the idea of promotion and déonds to add ordering constraints so that the step cannot
interfere with the achievement of the precondition.

Finally, we have to be able to recognise when we have reackelliion plan a finished plan.

A solution plan is one in which:

« every precondition of every step is achieved by the effésbme other step;

« all possible clobberers have been suitably demoted or piesnand

« there are no contradictions in the ordering constraings,disallowed isS; < S; andS; < S;; also disallowed
isS; < 5;,5; < SpandSy < S;.

Note that solutions may still be partially-ordered. Thitanes flexibility for as long as possible. Only immediately
prior to execution will the plan nedghearising, i.e. the imposition of arbitrary ordering constraints ¢eps that are
not yet ordered. (In fact, if there’s more than one agentf tirare’s a single agent but it is capable of multitasking,
then some linearisation can be avoided: steps can be cauted parallel.)

2 The POP algorithm

In essence, the POP algorithm is the following:

Make the initial plan, i.e. the one that contains only 8tart andFinish steps.
while the plan is not a solution plan
{ Choose one of the following:

1. Achieve an unachieved precondition by adding a new; step

2. Achieve an unachieved precondition using an existing ste

3. Protect a link by promotign

4. Protect a link by demotion

But what the above fails to show is that planning involvesd®eaAt certain points in the algorithm, the planner will
be faced with choices (alternative ways of refining the auremfinished plan). POP must try one of them but have
the option of returning to explore the others.

There are basically two main ‘choice points’ in the algarith

« In goal achievement, a conditianmight be achievable by any one of a number of new steps anxi&ting
steps. For each way of achievinga new version of the plan must be created and placed on tinelage
Question. A conditionc might be achievable by new steps or existing steps. Wheimgldgese alternatives on
the agenda, why might we arrange for the latter to come ofagenda before the former?

* When resolving threats, POP must choose between demattbpramotion.

(Some people think that the choice of which preconditiondbieve next also gives rise to search. But, in fact, all
preconditions must eventually be achieved, and so thesé ateernatives. The choice can be made irrevocably.)

Provided your implementation of POP uses a complete andhaptearch strategy, then POP itself is complete and
optimal.

However, the number of choices at each point can still be highthe unfinished plans that we store on the agenda
can be quite large data structures, so we typically abandampleteness/optimality to keep time and space more
manageable. Search strategies that are more like deptkearch might be preferable. And we might use heuristics
to order alternatives or even to prune the agenda.

In the lecture, we will dry-run the POP algorithm.

Afterwards, convince yourself that POP is a regression p&anthat it uses problem decomposition, that it searches
plan space, that it build partially-ordered plans and thebperates by the principle of least commitment.

7~ clear(c) & holding(a

[START }

clear(b) & clear(c) &
on(c, a) & ontable(a) &
ontable(b) & armempty
[\ ==--__on(c,a), clear(c), armempty
on(c, a) & E:feEr(c) & armempty
[UNSTACK(C, A)j
clea{(b) -on(c, a) & ~armempty &
/)/ ' ~clear(c) & holding(c) &
K N clear(a)
clear(c). ontdble(a)
clear(a) cléar(B) & holding(c)
[STACK(C, B) j
/ ya armem

clear(a) & ontable(a) & armempty ’

PICKUP(A)

-ontable(a) & -armempty &
-clear(a) & holding(a)

holding(a)

\

[STACK(C, A) }

—clear(c) & —holding(a) &
armempty & on(a, c) &
clear(a)

on\(é:b)x\\

T~

on(c, b) & on(a, c)

[FINISH }

Exercise (Past exam question)

1. An ALl planner operates in a simplified Blocks World. Thdyooperators in its repertoire move a blacrom
the table to another blogk
Op(ACTION: FromTabléz, y),
PRECOND: onTabléz) A clear(z) A clear(y),
EFFECT: —onTabldgz) A —clear(y) A on(z, y))
and move a block from blocky to the table:
Op(ACTION: ToTabldz,y),
PRECOND: on(z,y) A clear(z),

(b) Copy this plan onto your answer sheet. (Copy just the b@xel arrows; there is no need to copy the
preconditions & effects.)
» Choose an unachieved precondition in the plan.
« Add anew stepto the plan to achieve your chosen precondition. Draw it grtor copy of the
diagram. Include its preconditions & effects, all order swaints and all causal links.

« If your new step threatened any existing causal links, #tate which link(s) were threatened; state
what extra ordering constraint(s) you added to protecthheatened link(s); state whether what you
did was an example of promotion or demotion; and briefly expldny the extra ordering constraint(s)
fix the plan.

(c) Is the plan now complete? Explain your answer.

EFFECT: —-on(z, y) A clear(y) A onTabléz))
Here is an incomplete plan of the kind that could be built B/R©OP planner covered in lectures:

2. Write STRIPS operatoithat would enable a planner to build plans that it could givettotocopier repair robots.

Use the following predicate symbols:

on(a, b) A clear(a) A onTabléb) A onTabléc) A clear(c)

- -
- -

| on(a,b). -~
: clear(a) — = order constraint
onTahlé€b) Pk
Clear(?) orla, b) A clear(a) s order constraint and
ToTabléa causal link for

preconditiore
—-0on(a, b) A clear(b) A onTabléa)

clear(h)

-V

onTabléb) A clear(b) A clear(a)

)

—onTabléb) A —clear(a) A on(b, a)

on(b, a)

N
N

A
on(b,a) A on(c,b)

FromTablgb,

(a) Give thestartworld state andjoal of this plan.

copier(z) z is a photocopier
robot(z) x is a robot
noTonefz) 2 has no toner
hasTonefz) : « hastoner
hasPapefz,n) : a hasn sheets of paper
at(z,y) @ wisaty

You can also use the predicates<, >, > and=, the function symbols- and— and the constant symbols 0
and 1 if you wish, all with their usual meanings from arithimefHint: many students lost marks in the exam
by forgetting about the delete-list, i.e. the negated ¢df¢c

You should write the following three operators:

« replaceTonefz, y): To replace the toner, the copigy)(must be out of toner, a robat) must be at the
copier and it must have some toner, all of which it puts inedbpier.

« insertPapefz,y,n): To putn sheets of paper into the copiegj){ a robot ¢) must be at the copier and
it must have at least sheets of paper. (You should assume that the copier has nisnomaamount of
paper.)

« makeCopyz, y): To make a copy (using up one sheet of paper), a raah(st be at a copierj that has
toner and that has at least one sheet of paper.

