Sear ching State Spaces

1 A General Search Algorithm

How do we search for paths in our implicitly-specified gragtate space)?

We have some notion of thmirrent state— the one we're currently looking at. At the start of the sbatbe current
state is the one associated with the start state.

We check whether the current state is a goal state (whetbatigfies the goal condition). If it does then, assuming
we're looking for only one solution path, we can stop.

If the current state is not a goal state, @eandthe current state. What this means is that we apply operatdhss
state togeneratdts successostates.

While there might be no successor states (a dead-end) ooijessuccessor state, in general there will be multiple
successors. The essence of search is to choose one stattfer &xploration (it becomes the new current state) and
to put the others somewhere in case we want to come back tq éhgnif the chosen one does not lead to a solution.

The data structure in which we keep states that have not getd&eplored is called amgenda

Given that there are multiple states waiting on the agenetapybe explored, the policy which determines which state
to explore next is called theearch strategyor control strategy.

Here’s the algorithm in pseudocode:

insert start state ontagenda
while agendas not empty
{ currentState= remove fronfront of agenda
if currentStatesatisfies goal test
{ returnthe path of actions that led turrentState
}
else{ successors= states that result from expandingrrenState
insertsuccessorsntoagenda
}

return fail;

Different search strategies result from different impleta¢ions of the line that | have underlined.

2 Search Trees

One way to think about the search algorithm is that it is mgldrplicit parts of the implicitly-specified state space:
the nodes it actually visits and the edges it actually trse®r The parts of the state space that the search algorithms
visits can be shown in the form of a tree, called $earch tree

It's important to distinguish the state space from the detiee. The state space is all the states reachable by seguenc
of actions from the start state. The search tree is diffdyecause:

» Some search strategies may leave parts of the state spaxglared. In other words, there may be nodes and
edges in the state space that never get visited and so do peamjn the search tree. This, of course, is a
‘good thing': it improves efficiency, although, if we skimpa much, we may end up missing the solution paths,
which, in general, is a ‘bad thing’.

Some search strategies may re-explore parts of the state sphis can happen when two or more paths in the
state space lead to the same node. Unless steps are takeal tattiehis, then some nodes in the state space
may get visited and expanded more than once, and so theyrdpyka search tree more than once. This is, in
general, a ‘bad thing’, although the cost of eliminatingahde high. (A common special case of this is when
the state space is cyclic. Unless steps are taken to deatydtes, the search tree may then be infinite.)

Let's explore the second bullet point in more detail.

3 Avoiding Re-exploration

Strictly, we cannot draw search trees unless we know whagehech strategy is. But, to illustrate the second bullet
point above, without getting too bogged down in wonderingtthe exact search strategy is (i.e. how to decide what
to visit next), in the lecture we will draw possible searaes for the following two state spaces:

start node start node

To avoid re-exploration of parts of the state space, we masnbre selective about which states we add to the
agenda. Some of the successors of the current state shodiscaeded. There are various ways of deciding which to
discard, and they vary in how effective they are in avoidiegexrploration and in how much time & space they cost
us. (Sometimes it might be better to allow some re-explonatiather than pay the price of eliminating it).

Three options for avoiding (some or all) re-exploration@wexmon:

« Discard any successor that is the same as the current rateist.
« Discard any successor that is the same as another nodetgatha

« Discard any successor if it is the same as any previouslgrgéed node.

ClassExercise. How effective at avoiding re-exploration are these thregays? What do they cost in time & space?

[Advanced point. In fact, I'm oversimplifying this third ¢ipn. (Ignore this if it makes no sen$e-rom the above,
you might assume that if the newly-generated node is the saragreviously-generated node, we always throw away
the new nodeBut, this is not correctlf the cost of the path to the new node is less than the costeopdth to the
previously-visited node, then we should not throw away tew node (because the path to it is cheaper.) To handle
all of this properly makes the algorithm so complicated asaosts (both space and time) so much higher that this
option is hardly ever implemented. If you want to read a prajescription of such an algorithm, consult a textbook
such as Nils NilssonArtificial Intelligence: A New SynthesiBlorgan Kaufmann, 1998.]

4 Search Strategies

The search strategy is responsible for deciding which no@spand next. Search strategies fall into two classes.

In uninformed searckelso calledindirected searcandblind search), the strategy has no problem-specific knowledge
that would allow it to prefer to expand one node over anothiaran distinguish goal states from other states, and it
will know the length of the path or the cost of the path fromsteet state to each state on the agenda. But it will know
nothing about the probable length or cost of extending a pathat it leads to a goal state.

In informed searclfalso calleddirected searckandheuristic search we make available to the strategy some problem-
specific knowledge about the likely length or cost of the pdtbm each state on the agenda to a goal state.

It turns out that we can use our general search algorithmasilyeimplement different search strategies simply by
altering the way the agenda works. Our algorithm always eapghe node that is on the front of the agenda. But we
have not yet said where, when it is adding nodes to the agératids them. By changing this, we get our different

strategies.

We'll be illustrating the two strategies in the lecture or tbllowing state space:

Start Node

Goal Node

Goal Node

In some ways, this isn't a very standard state space. Firstshown it explicitly, rather than specifying a start stat
and some operators. Second, to keep the lecture simpleydh@lowed more than one path to each node. This means
we don't have to think about avoiding re-exploration: tharsbes will all be finite. But remember, this is the state
space; it's not the search tree (which is what we’ll show mltcture).

4.1 Uninformed Search: Breadth-First Search

In breadth-first searchwe treat the agenda asjaeue Nodes come off the front (as always), and new nodes are added
to the back. This means that all nodes at depththe search tree are expanded before any-atl. (All paths of
length 1 are considered before any of length 2, and all ofteBgre considered before any of length 3, and so on.)

4.2 Uninformed Search: Depth-First Search

In depth-first searchwe treat the agenda astack Nodes are popped from the front of the agenda (as always), an
new nodes are pushed onto the front of the agenda. This meatrtbé strategy always chooses to expand one of the
nodes that is at the deepest level of the search tree. It aplyrels nodes on the agenda that are at a shallower level
if the search has hit a dead-end at the deepest level. (A pattpanded as much as possible —until it reaches a goal
state or can be expanded no more— prior to extending othbspat

5 Evaluating a Search Strategy

We're going to look at several search strategies. We neee soiteria in terms of which we can compare them. The
criteria used in Al are these:

Completeness: A search strategy is complete if it guarantees to find a smlutihen there is one.
Note that is a somewhat one-sided definition. It doesn’t isepany requirement on the strategy in the case
where there is no solution. In these circumstances, maybsttategy will say ‘There’s no solution’, or maybe
it will run forever. All that matters for completeness isthre is at least one solution, then it gets found.

Optimality: A search strategy is optimal if it guarantees that it will fthé highest-quality solution.
What we mean here is that the first solution path it finds mushéaighest-quality one. We're not entertaining
the idea that it finds a solution, and then continues to searabther solutions so that it can choose the best of
them afterwards.
Note that an algorithm cannot be optimal if it isn’t comple®e, if you prefer, optimality implies completeness.
The notion of ‘highest-quality’ here concerns the path cd®écall that we have a functiog) the path cost
function, which sums the costs of the actions along a pathll Béewriting g(n) to mean the cost of the path
from the start state to staie For optimality, we want the strategy to find the cheapesitami path. (In the
case where the actions haven’t been assigned any costsy¢heant to find the shortest path — this, of course,
is equivalent to treating all actions as having uniform castlg(n) is then just the length of the path o)

Time complexity: How long does it take to find a solution? We’'ll generally repmorst-case results, but best-case
and average-case are also of interest.

Space complexity: How much memory is needed to perform the search worst-, bedtaverage-case)?

Exercise (Part of past exam question)

A farmer, a wolf, a goat and a sack of cabbages are on the Iekt &a river. There is a boat on the left side of the
river too. It must be crewed by the farmer, and has room foy onk of the other three. At no point can the farmer
leave the wolf and goat together unattended. Similarlygibegt and the cabbages cannot be left together unattended.
The goal is to ferry all four across to the right bank.

One (analogical) problem representation is to represerfatimer, wolf, goat, cabbages and boat as variablgs, G, C
andB respectively, and then to represent states by two setse ttezss on the left bank, and those on the right. There-
fore, the start state isSF'WGCB} — {} and the goal state is} — { FIWGCB}. There are 8 operators: one for moving
farmer and wolf from left bank to right, another for movingth back, two more for moving farmer and goat, two
more for moving farmer and cabbages, and two for moving threéaunaccompanied.

1. Draw thestate space

2. Your state space is to be searched using an agenda-baseld algorithm. However, when the current node is
expanded, if a successor is the same as any node alreagyl\dsithapath, it is discarded.
Hence, draw theearch treeshat are built bydepth-firstsearch andreadth-firstsearch. (Multiple answers are
possible. You need give only one such answer in each case.)

3. The algorithm is changed so that a successor is discaridésithe same aanypreviously visited node.
Would the search tree falepth-firstsearch be any different from the one you gave above. If soy dra
Would the search tree fdareadth-firstsearch be any different from the one you gave above. If so ira

