
Deliberative Agents

1 Thinking Ahead

We’ve assumed that our agents implement, in some form, a sense/plan/act cycle. But so far, the plan phase has been
quite simple. In particular, our agents have not done any thinking ahead. In general, to build a more intelligent
agent, we require that the plan phase be more deliberative. To choose between actions, agents must think through the
consequences of actions ‘in their heads’ prior to execution. It will often be better still to consider wholesequencesof
actions. (For example, consider the way players think aheadin chess.)

Thinking ahead is a form of simulation: trying out an action or a sequence of actions on a mental representation prior
to executing the action(s) in the actual world. Let me stress: during deliberation (simulation), the effects of chosen
actions are used to update only the model of the world. There is no execution of actions on the environment during
this phase. Only once the plan phase has been completed and anaction that we hope will be effective has been chosen,
do we move on to the act phase of the cycle and actually executethe action.

Class exercise. Can you give more precise reasons why this kind of thinking ahead is advantageous: what can go
wrong if you don’t think ahead?

Class exercise. Are there times when thinking ahead is disadvantageous: what can go wrong if you do think ahead?

As mentioned above, it is often going to be the case that, during the plan phase, the agent investigates whole sequences
of actions. But this gives us at least two ways of constructing our agent. On the one hand, the agent could sense the
current state of the world, run its simulation to decide on a sequence of actions that would transform the world from
its current state to a goal state, hand this sequence over to the execution phase, and then execute the whole sequence.
Such an agent would need to work through the sense/plan/act cycle only once:
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On the other hand, the agent could sense the current state of the world, run its simulation to decide on a sequence of
actions that would transform the world from its current state to a goal state, hand only the first of the actions in the
sequence over to the execution phase, and then execute this one action. It would then repeat this sense/plan/act cycle.
So, in this scenario, although whole sequences of actions are being investigated, only the first action in the sequence
is being executed for real:
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Class exercise. The second approach appears to be wasteful. But the first approach is suitable only for certain
environments. What kinds of environments?

Of course, these two approaches are extremes. One can imagine intermediate approaches where a handful of actions
from the action sequence are executed before the next sense/plan/act cycle.

In what follows, I shall write these notes as if we were using the first approach. This is done for no reason other than
to simplify the explanation.

We are also, for the moment, going to assume that we use analogical representations for our models of the world.
More complicated algorithms are needed for logical representations, so we postpone looking at them for a while.

Finally, we’re going to assume (for no reasons again other than simplicity and concreteness) that our models of the
world are always correct and fully-specified (e.g. there will be no ‘unknowns’ as there were in the lawn mower
example).

2 State Space Search

We’ve been using phrases such as thinking ahead/ planning ahead/ deliberation/ simulation. But the way we implement
this process is usingsearch.

Unfortunately, the word ‘search’ has two meanings in AI (and, to a lesser extent, in Computer Science). (Actually,
they’re not really different, but your understanding mightbe improved if we keep them separate.)

There is its ‘traditional’ meaning: where we are seeking some item in a data structure (e.g. linear search or binary
search of an array, linked list, file or database table). Obviously, in AI, we sometimes need to carry out such operations
(e.g. searching for the first rule in a production system whose condition is true), and so we sometimes use the word
‘search’ with this ‘traditional’ meaning.

The other meaning is the more common one in AI, where we have agraph(nodes and edges) and we are searching for
(trying to find) apath(sequences of connected edges) in the graph from one node to another.

Deliberation, then, is about searching for paths in graphs.In this case, we’re usingdirected graphs(where each edge
has a direction, indicated by an arrowhead). The nodes of thegraph represent possible states the world can be in.
Each edge between two nodes represents execution of an action, transforming one state to another. One of the nodes
represents the initial state of the world, thestart state. One or more nodes representgoal states. The task is to find a
path from the node labelled by the start state to one of the nodes labelled by goal states.

Such a graph, of states reachable by sequences of actions from some start state, is called astate space.

But. . .

In Computer Science and Mathematics, such graphs are specified quiteexplicitly. Mathematically, you are given two
finite sets: the set of nodes and the set of edges. Implementationally, the graph will typically be stored in memory as
a node-and-pointer data structure.

In AI, the graphs (state spaces) can be very large. (Very verylarge.) (Some people even consider the possibility of
graphs with an infinite number of states. But we won’t.) Therefore, we do not (and maybe cannot) specify them
explicitly. We use animplicit specification. State spaces are specified by giving:

• thestart state;

• theset of operatorsfor transforming states to other states; and

• thegoal conditionthat can detect whether a state is a goal state or not.
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While the graph itself is not usually explicitly given (because it’s generally too large), it is, in principle, possible
to make it explicit from this implicit specification. Indeed, as search proceeds, the search algorithm will explicitly
constructpartsof the graph in memory.

Note that it is also common to associate numbers with each operator, representing the cost or benefit (in terms of time,
money, energy, or whatever) of using the corresponding action. We can then compute the total cost of a path in the
graph by summing the costs of the edges along that path. Thispath cost functionis typically calledg.

3 The 8-Puzzle

Here’s an example of a state space. It’s a toy example, but it’s a huge space. If toy examples give such huge spaces,
imagine what real world problems might be like.

In the 8-puzzle, 8 uniquely-numbered tiles sit in a3× 3 grid. The task for an agent is to find a sequence of tile-sliding
actions that transforms some initial configuration to some goal configuration. An obvious (analogical) representation
for the states is a3 × 3 array of integers.

Let’s specify a state space for this puzzle.

• The start state might be:
2 8 3
1 6 4
7 5

• It’s tempting to think that there are 32 operators: move 1 up, move 1 left, move 1 right, move 1 down, move
2 up,. . . . But, more compactly, if we can swallow the seeming absurdity of it, we need only 4 operators: for
moving the blank:

if blank is not at top edgethen move it up
if blank is not at left edgethen move it left
if blank is not at right edgethen move it right
if blank is not at bottom edgethen move it down

• The goal state might be:
1 2 3
8 4
7 6 5

In the lecture, we’ll make explicit a small part of this implicitly-specified graph.

This state space has9! = 362, 880 states.

4 The Water Jugs Problem

Here’s another state space example.

An agent has a 4-gallon and a 3-gallon jug. Neither jug has anymeasuring markers on it. Also available are a tap and
a drain, and nothing else. The jugs are initially empty. The goal is to getexactly2 gallons of water into the 4-gallon
jug.

An obvious (analogical) representation for the states is a pair of integers〈x, y〉, wherex is the amount of water in the
4-gallon jug (x ∈ {0, 1, 2, 3, 4}) andy is the amount of water in the 3-gallon jug (y ∈ {0, 1, 2, 3}).

• The start state is represented by〈0, 0〉.
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• The operators are:

1. if x < 4 then 〈4, y〉

2. if y < 3 then 〈x, 3〉

3. if x > 0 then 〈0, y〉

4. if y > 0 then 〈x, 0〉

5. if x + y ≥ 4 ∧ y > 0 then 〈4, y − (4 − x)〉

6. if x + y ≥ 3 ∧ x > 0 then 〈x − (3 − y), 3〉

7. if x + y ≤ 4 ∧ y > 0 then 〈x + y, 0〉

8. if x + y ≤ 3 ∧ x > 0 then 〈0, x + y〉

• The goal states are any that match the pattern〈2, n〉.

In the lecture, we’ll make explicit a small part of this implicitly-specified graph.

This state space has only 20 states, but there are numerous cyclic paths through the graph.

Exercises

Hint (and rant). In these exercises you are asked for analogical representations for states. I am sick (!) of student
answers to these questions involving arrays. Just because the 8-tiles puzzle uses arrays, doesn’t mean that all answers
use arrays. Re-read the notes from the lecture about analogical representations. Use arrays only if they seem like
a suitable analogical representation. Otherwise considerthe numerous other possibilities: pairs, triples, and more
generally,n-tuples; lists; sets; bags; stacks; queues; trees, . . . .

1. (Past exam question) The Towers of Hanoi Problem

There are 3 poles, and there are five disks of different diameters each having a hole in its centre so
that it can be slotted onto the poles. The disks are all on the first of the poles and must be moved to
the third of the poles. Only one exposed disk may be moved at a time. At all times, the disks on a pole
will be in decreasing order of size (smallest on the top).

While there are straightforward (recursive and non-recursive) algorithms to solve this problem, in this question
you formulate it as an AI search problem. You must develop theproblem representation on which search
algorithms could be used. (Extra marks will be gained for precision.)

(a) Give an analogical representation for thestates.

(b) Give thestart state.

(c) Give thegoal state.

(d) Give theoperators. (The easiest formulation uses six operators. Showing one of the six and giving a
sentence that explains briefly how the rest differ will suffice.)

2. The Towers of Brahma Problem

There are 3 poles, arranged in a row; there are five disks of different diameters, each having a hole
in its centre so that it can be slotted onto the poles. The disks are all on the first of the poles and must
be moved to the third of the poles. Only one exposed disk may bemoved at a time. At all times, the
disks on a pole will be in decreasing order of size (smallest on the top). When moving a disk, it can
only be moved to an adjacent tower, i.e. a disk cannot be movedfrom the leftmost of the 3 poles to
the rightmost (or vice versa) in a single move.
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If you were formulating this problem as an AI search problem,how would your formulation differ from the one
you gave for the Towers of Hanoi, above?

3. (Very, very hard!) Consider the following scenario.

Five men and five women have just been married on a tropical island. All now wish to return to the
mainland. A boat, which can carry at most three people, is available to ferry the newly-weds back
to the mainland. The boat must be crewed by at least one person, male or female, on every trip it
makes.

Libidos are at full stretch and the couples have agreed that no woman should at any point find herself
in the company of the other men (even if those men are with their wives!) unless her husband is with
her.

You must develop the problem representation on which searchalgorithms could be used. (Extra marks will be
gained for precision.)

(a) Give an analogical representation for the states.

Give the start state.

Give the goal state.

(b) Give the operators.
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