Classification: Bayesian Methods

1 Bayes' Rule

Bayes' rule states:
P(A = (ZZ‘B = bJ)P(B = b])

P(B=b;|A=a;) = Pl —a)

Bayes' rule is useful in practice because there are manyaaisere we do have estimates of the three probabilities
needed to compute the fourth.

For example, a doctor may know that: meningitis causes therpido have a stiff neck 50% of the time; the (uncon-
ditional) probability that a patient has meningitis is @00Q; and the (unconditional) probability that a patient Aas
stiff neck is 0.05.
P(stiffNeck= truémeningitis= true) = 0.5
P(meningitis=true) = 0.00002
P(stiffNeck= true) 0.05

By Bayes’ rule,
P(stiffNeck= trugmeningitis= true) P(meningitis= true)

P(meningitis= trug/stiffNeck= true) = P(stifiNeck= tue)

0.5 x 0.00002
= —Qomn - 0.0002

i.e. we expect 1 in 5000 patients who have a stiff neck willhaneningitis.

An obvious question is: why might we be likely to have an eatied conditional probability in one direction, but
not the other? Why might we have an estimate’¢étiffNeck= trugmeningitis= true) but not of P(meningitis=
trugstiffNeck= true)? The former (the probability of a stiff neck given that theigat has meningitis) reflects the
way that meningitis works, i.e. that it causes stiff neckhisTprobability estimate is therefore largely unaffectgd b
changing circumstances. The latter (the probability thatgatient has meningitis given that s/he has a stiff neck —
in other words how predictive a stiff neck is of meningitis)more fragile knowledge: it depends on all the other,
possibly changing, factors that affect why people are mg#itiff necks.

2 Using Bayes’ Rule in Classification

Recall from earlier that to classify a new instance, we ddafiewing:

1. For each class label € L, compute the conditional probability for that class giviea tlescription of the new
instance:
P(class=cl|A; = a1, Az = ag, ..., A, = ay)

2. Return the class label with the highest probability.
Previously, we computed the conditional probability frdre joint probability distribution. But we are now assuming

that this distribution is not available. But we can use Bayas to rewrite the expression so that it uses probabditie
that might be available:

P(class= cl|A1 = a1, As = az,..., Ap = an) =
P(A) = a1, A2 = as, ..., A, = ay|class= cl)P(class= cl)
P(A; =a1,As = az,..., Ap = an)

Do we have these three probabilities?

* We can easily estimatB(class= c/) from a dataset.

* As we saw in the previous lecture, we don'’t really need thésdr because it will be the same in every compu-
tation, i.e. for eachl € L.

* But there is a problem when it comes to the conditional podlies P(A; = a1, 42 = ag,..., A, =
ay|class = cl). Again, the approach doesn’t scale up. The number of camditiprobabilities we need to
have estimated is the number of possible instance destrpmultiplied by the number of classes. This will
often be too large. To see this by way of an example, let'sraeslln attributes are Boolean-valued; the num-
ber of different instance descriptions is tH&h We would need to estima@¥ x |L| conditional probabilities.
We might as well go back to using the full joint probabilitysttibution.

How can we rescue ourselves?

3 Bayesian Classification using the Ni@e Bayes Distribution

In classification above, we had the problem of obtaining philities P(A; = a1, A2 = as, ..., A, = ay|class= cl).
Maybe the notions of independence or conditional indepecelean help.

It is unlikely that statements about the attributes thatdes instances will be independent, i.e. it is unlikelyttha
Ay =ay andA; = ay and ...and4,, = a, are independent.

But it may be the case that they are conditionally indepengiganclass= c!. If so, we can rewrite:

P(A; = a1, As = as, ..., A, = ay|class= cl) =

P(A; = ay|class= cl) x P(As = az|class= cl) x ... x P(A, = ay|class= cl)
So, to recap, what we want to compute is:
P(class= cl|A1 = a1, A2 = az, ..., Ap = ay)
which, by Bayes’ rule, becomes

P(A1 = a1, Ay = ay,..., A, = aylclass= cl) x P(class= cl)
PAy=a1, Ay =as,..., Ay = ay)

and, if the attributes are conditionally independent gitrenclass, we get

P(A; = aq|class= cl) x P(Az = ag|class= cl) x ... x P(A, = ay|class= cl) x P(class= cl)
P(Ai=a, A2 = az,..., Ap = ay)

Is it now more feasible to obtain the probabilities?

» As above, we can easily estima®class= cl) from a dataset.
» As above, in classification we don’t really need the divisor

« Due to conditional independence, we no longer nBéd, = ay, As = ao,. .., A, = ay|class= cl) for each
class. Instead, we nedé(A; = aj|class= cl), P(A2 = aslclass= cl), ..., P(A, = ay|class= cl) for
each class. These are easily computed from datasets. Aeeféveer probabilities to estimate? Yes! Consider
n Boolean-valued attributes anfl| classes. Originally, we needet x |L| conditional probabilities. Now we
need2n x |L| conditional probabilities.



Of course, this all relies on the attribute-value pairs eionditionally independent given the class. However, this
approach is often used even when the attribute-value p@insca conditionally independent. It can work surprisingly
well, even in these applications. Classifiers that workwiag are often calledaive Bayes classifiershey are ‘naive’
because of the simplifying assumption.

4 Summary of Nave Bayes Classifiers

Learning step. This requires a dataset. For each instance, the datasegiveishe instance’s attribute values and its
class. Learning that uses data of this kind (i.e. where a@thnce is already associated with its corresponding
output) is calledsupervised learningThis is a phrase we will define properly in a future lecture.

From the dataset, we must estimate

» P(class= cl) for each class! € L.
* P(A = a;|class= cl) for each attribute-value pait = a; and class{ € L.

Classification step. A new instancg A, = a1, A2 = ao, ..., A, = a,} is classified as follows:
1. Compute, for each classe L,
P(class= c|A; = a1, Az = ag,..., A, = ay)
which, by Bayes’ rule and the simplifying assumption of citiodal independence, is computed as

P(A; = ay|class= cl) x P(As = as|class= cl) x ... x P(4,, = a,|class= cl) x P(class= cl)
P(Ar = a1, A2 = ag, ..., An = an)

(And, remember, we don't need the divisor.)
2. Return the class label with the highest probability.

The learning step is done once-and-for-all, in advancebtaio the probabilities. In principle, once we have obtdine
the probabilities, the dataset can be thrown away. Thenaels eew instance arises, we can classify it using these
probabilities.

5 Example

We are given the following dataset:

shape  colour size | class

circle blue large +
circle red medium -
circle red large -
square blue small | -
square red small

square red medium +
square blue  medium +

square blue large -
triangle red small
triangle red large +

triangle  blue  medium +

In the lecture we will use the naive Bayes classifier to dia#ise new instanc¢shape= circle, colour = blue size=
mediun}.

In the lecture we will also answer:

* Are colour = red andsize= large independent?

* Are colour = red andsize= large conditionally independent giveslass= +?

6 Discussion

» The naive Bayes classifier is competitive with other dfacsgion methods in many cases. In some cases, it even
outperforms other methods. For classifying textual doqumige.g. into spam and ham), it is among the more
effective algorithms. It is also scalable: it can easilydiarihousands of attributes.

Itis possible that some of the conditional probabilitiésd = a;|class= cl) that we compute from the dataset
will be zero. If zero probabilities are ever used in clasatfiin, then the whole probability of that class will
evaluate to zero and that class will be ruled out. A simplatsmh is to replace the zero by a small constant, e.g.
0.5/n or P(class= cl)/n wheren is the number of instances in the dataset. Others apply aatan to all
probabilities. For example, instead of computing

cl
Ni=a,;

nel

wheren is the number of instances in whidtass= cl andnj;{ is the numbenof thesein which A = a;,

they compute

=a;

el
Nj—q, + M
ne +m

wherem is a small positive integer.

If you have a large number of attributes, then the produtitefconditional probabilities, is likely to underflow
in floating point maths. To avoid this problem, instead of poiting and comparing the following

P(A;, = ay|class= cl) x P(As = as|class= cl) x ... x P(4, = a,|class= cl) x P(class= cl),
(from above but without the divisor), you use logarithms
log P(A; = ai|class= cl)+log P(As = as|class= cl)+...+log P(A, = ay|class= cl)+log P(class= cl)

(This is another reason why we cannot allow probabilitielse@ero: you cannot take the log of zero.)

We've assumed discrete values for our attributes. Whesedibes not hold, you can use discretisation. There
are also methods for handling real-valued attributes tlirec

If there are many candidate attributes, it may be usefuéstrict attention to only a subset of the attributes.
Various methods have been proposed for automatically mé@térg which subset to use.

There is an enormous amount of work nowRmyesian networksvhich provide a way of explicitly representing
dependencies, thus allowing the removal of some of the iexidpnce assumptions made by naive Bayesian
methods.



