Unification

1 Introduction

Pattern-matching —the ability to see that one descriptamthe same structure as another— is obviously fundamental
to intelligence. In this lecture, we look at one example ofvito do pattern-matching. In this case, however, the
patterns we are matching are expressions of logic. To be precése, they'ratoms

So, in this lecture, we stop looking at logic from a mathen®point of view, and start to look at it from a computa-
tional point of view. We're interested in how to implementarticular operation. This operation is calledification

2 Bindings and Substitutions

A bindingis a mapping of a variable to some other expression, and ftewri
Vi—e

We say that variabl® is boundto expressior. e may be a constant symbol, another variable, or a functiorbsym
with its arguments (in other words, aterm). However, there is another restrictiancannot contaiv’, e.g.z — f(z)
isillegal.

A substitutionis aset of bindingse.g.{z — a,y — 2,z — f(a,b)}

There are two important operations (which we will use in @pliementation of unification) that we must study at this
point.

2.1 Applying a substitution

To applya substitution to an expression is simply to replace vagembi the expression by what they are bound to in
the substitution. (We call thimstantiatingthe variables.)
Fill in these examples in the lecture. Lebep(z, f(y),b)

0 | ed
{z—z,y— w}

{y—c}
{z—9(2),y —d}

{zcymd}

2.2 Composing two substitutions
To composéwo substitutions is to bring the two sets of bindings togeihto a single set. But it's an operation that
requires some care.

First, youapplythe second set to each expression in the first set. Then, ybtoate result any bindings from the
second set whose variables do not appear among the vardikesfirst set.

Again, fill in these examples during the lecture.

0 {z—flz,y)}
T {z—by—cw—dz—e}

ot

0 A{x1 = f(y), 22 = y2, 73 = g(y1,92)}
T {1 a,y2 Y3}

ot

3 Unification

Two expressions;; andes, unifyif there exists a substitutiohsuch that
e10 = esl)
i.e. a substitution that, when applied to both expressioadkes them equal. We say tifais aunifier of e; andes,.

For example, these two expressions unify. (Fill in the unifigring the lecture)
p(a, 2, f(y),b)
p(2,2, f(c);b)

But, what we generally want to come up with is the substitutizat is themost general unifie(mgu) of the two
expressions. For example, here’s one unifier of these twesgns:

pla, f(y),b) {z — ¢,y — b} =

p(x, f(b),0) {z — ¢,y — b}

But here’s another:
plz, f(y),0) {y — b}

p(x, f(b),0) {y — b} =

The second unifiedy — b}, is more general than the firgty — ¢,y — b}. It contains fewer bindings, and yet still
makes the two expressions equal. (It has no unnecessarpdiiod )

We will want to compute thenostgeneral unifier: the one that makes fewest bindings (no Lessecy ones). If the
expressions unify at all, there will be a unique most geneméler (up to variable renaming).

4 A Unification Algorithm

This algorithm computes the mgu of two atoms (if there is of®member, an atom is a predicate symbol with its
arguments (each of which is a term).



« If the predicate symbols are not the same, or if the aritiesiat the same, return fail

« Otherwise, st

ep thro’ the two atoms, argument by argument

— If the arguments are equal, go on to the next argument
— If they are different,

* Ifat

least one is a variable,

- create a binding (but do tleecurs chec§
- applythe binding to the rest of the atom
- composehe binding with the set of bindings found so far

* |f not, but both are compound terms using the same functiorbsy,

- step thro’ the arguments of the function symbols
+ Otherwise, return fail

(The ‘occurs check’ is the check that we aren’t forming aggéll binding such as — f(z).)
In lectures, we'll apply the algorithm to the following exples. Be very clear which symbols are constants and which

are variables!

1) p(a,b,c)
a(a,b,c)
2) pla,b,c,z)

pla,b,z,y)
3) pla,b,c)
p(a,z,x)

4)  pla, f(c ‘L)!;

5) p(a, f(b;2))

(d;e))

6) pla.f(c.).)

7 p(a, f(z),x)

Exercises

Determine whether the members of the following pairs of a&omify with each other. If they do, give the mgu; if not,

give a brief explanation.

Nogrwhpe

colourn(tweety yellow)
colour(tweety yellow)

colour(hat(postmanP3t blue)

r(f(z),b)
r(f(y),x)
r(f(y),y,x)
lovegz,y)

colour(z,y)
colour(z, )
colour(hat(y), z)
(y, 2)

v, £(b))

r(x. f(a), f(v))
lovesy, z)



