
Clausal Form Logic

1 Introduction

Over the next few lectures we introduce the topics necessaryto an understanding of the proof theory at the heart of a
lot of knowledge-based systems. It’s also the proof theory used by many automated theorem-proving systems, by logic
programming languages such as Prolog and by many deductive databases. In this lecture, we introduce a canonical
form (a standard form) for wffs.

The canonical representation is calledclausal form. Using a canonical form we can get a sound and complete proof
theory which is amenable to automation. In the worst case, its performance is no better than any other sound &
complete proof theory, but it seems to perform well in practice. To be more precise, for CFL, if we use refutation
instead of deduction, we can get a proof theory that is sound &complete but has

• only one inference rule, and

• no logical axiom schemata.

Clausal Form Logic is as expressive as FOPL. And, in fact, there’s even an algorithm for taking wffs in FOPL and
converting them toclausesin CFL. But wffs of FOPL and their corresponding clauses in CFL are not necessarily
logically equivalent. In other words, the original wff and the corresponding clauses are not necessarily true in exactly
the same models.

Instead, the translation preserves a weaker property: satisfiability and unsatisfiability. If the original wff is (un)satisfiable,
then the clauses will also be (un)satisfiable. This will turnout to be OK because we will build refutation proofs (proof
by contradiction), where finding inconsistency (unsatisfiability) is what matters.

2 The Conversion Algorithm

Here, in summary, is the algorithm for converting an ordinary FOPL wff into a set of clauses in CFL:

1. Relabel clashing variables

2. Eliminate⇒ and⇔

3. Move¬ inwards

4. Skolemise existentially quantified variables

5. Drop universal quantifiers

6. Distribute disjunction over conjunction

7. Rewrite as clauses

8. Standardise variables apart

— in that order!

Here’s the algorithm again with explanation and an example.

1

Relabel clashing variables

Rename variables so that each quantifier has a unique variable, i.e. make sure that the same variable is not quantified
more than once within the same wff.

∀x∀y¬(p(x, y) ⇒ ∀y q(y, y))

becomes
∀x∀y¬(p(x, y) ⇒ ∀z q(z, z))

(To avoid having to remember this step, it’s a good idea neverto write wffs with clashing variables in them!)

Eliminate ⇒ and ⇔

Use:
(W1 ⇒ W2) ≡ (¬W1 ∨ W2)
(W1 ⇔ W2) ≡ ((W1 ⇒ W2) ∧ (W2 ⇒ W1))

In our example,
∀x∀y¬(p(x, y) ⇒ ∀z q(z, z))

becomes
∀x∀y¬(¬p(x, y) ∨ ∀z q(z, z))

Move¬ inwards

Keep moving negation operators until we are only negating atoms.

Use:
¬∀X W ≡ ∃X¬W

¬∃X W ≡ ∀X¬W

¬(W1 ∨ W2) ≡ (¬W1 ∧ ¬W2) (de Morgan)
¬(W1 ∧ W2) ≡ (¬W1 ∨ ¬W2) (de Morgan)

¬¬W ≡ W

Our example
∀x∀y¬(¬p(x, y) ∨ ∀z q(z, z))

becomes
∀x∀y(¬¬p(x, y) ∧ ¬∀z q(z, z))

which then becomes
∀x∀y(p(x, y) ∧ ∃z¬q(z, z))

Skolemise existentially quantified variables

Replace existentially quantified variables with Skolem terms.

If ∃Y occurs in the wff and it appears within the scope ofn (n ≥ 0) universal quantifiers∀X1∀X2, . . . ,∀Xn, then
choose a newn-ary function symbolF distinct from all the others in the wff, replace all occurrences ofY with
F (X1, X2, . . . , Xn), and strike out the∃Y . For the case wheren = 0, a 0-ary function is chosen: a 0-ary function is
the same as a constant symbol.

2



Schematically, this is what this step does:

a. ∃Y ∀X1, . . . ,∀Xnp(X1, . . . , Xn, Y )
becomes
∀X1, . . . ,∀Xnp(X1, . . . , Xn, c)

b. ∀X1, . . . ,∀Xn∃Y p(X1, . . . , Xn, Y )
becomes
∀X1, . . . ,∀Xnp(X1, . . . , Xn, f(X1, . . . , Xn))

wherec is a new constant symbol andf is a new function symbol

Our example:
∀x∀y(p(x, y) ∧ ∃z¬q(z, z))

becomes

∀x∀y(p(x, y) ∧ ¬q(f(x, y), f(x, y)))

Here’s another example:
∃w(p(w) ∧ ∀x∃y∃z q(w, x, y, z))

becomes
p(c) ∧ ∀x q(c, x, g(x), h(x))

Note that this is the step that means that we are only preserving (un)satisfiability. This is the step that is not based on
equivalences.

Drop universal quantifiers

Now our wffs only contain universally quantified variables.And because of the renaming of variables done in step 1,
all the variables are different. We can drop the quantifiers and have the variables as implicitly universally quantified.

Our example:
∀x∀y(p(x, y) ∧ ¬q(f(x, y), f(x, y)))

becomes
p(x, y) ∧ ¬q(f(x, y), f(x, y)))

Distribute disjunction over conjunction

Convert the wff toconjunctive normal form. A wff is in conjunctive normal form iff it is a conjunction ofdisjunctions
of literals. (Recall that a literal is an atom or a negated atom.). So a wff is in conjunctive normal form if it has the
following form:

(P1 ∨ P2 ∨ . . . ∨ Pl) ∧ (Q1 ∨ Q2 . . . ∨ Qm) ∧ . . . ∧ (R1 ∨ R2 ∨ . . . ∨ Rn)

where eachPi, Qi andRi is a literal (an atom or a negated atom).

Our example:
p(x, y) ∧ ¬q(f(x, y), f(x, y)

is already in conjunctive normal form, so there is no change resulting from this step.

In general, we would use the following:

(W1 ∨ (W2 ∧ W3)) ≡ ((W1 ∨ W2) ∧ (W1 ∨ W3))
(W1 ∧ W2) ∨ W3)) ≡ ((W1 ∨ W3) ∧ (W2 ∨ W3))

3

Also, associativity can be useful:

(W1 ∨ (W2 ∨ W3)) ≡ ((W1 ∨ W2) ∨ W3) ≡ W1 ∨ W2 ∨ W3

(W1 ∧ (W2 ∧ W3)) ≡ ((W1 ∧ W2) ∧ W3) ≡ W1 ∧ W2 ∧ W3

Here’s an example:
p ∨ (q ∧ r ∧ s ∧ (t ∨ u))

becomes
(p ∨ q) ∧ (p ∨ r) ∧ (p ∨ s) ∧ (p ∨ t ∨ u)

Another example:
p ∧ (q ∨ r ∨ s ∨ (t ∧ u))

becomes
p ∧ (q ∨ r ∨ s ∨ t) ∧ (q ∨ r ∨ s ∨ u)

Rewrite as clauses

Split the wff up into bits (one per conjunct). Each bit is referred to as aclause.

In general,
(P1 ∨ . . . ∨ Pl) ∧ (Q1 ∨ . . . ∨ Qm) ∧ (R1 ∨ . . . ∨ Rn)

becomes
P1 ∨ . . . ∨ Pl

Q1 ∨ . . . ∨ Qm

R1 ∨ . . . ∨ Qn

Our example:
p(x, y) ∧ ¬q(f(x, y), f(x, y))

becomes two clauses
p(x, y)

¬q(f(x, y), f(x, y))

Standardise variables apart

Renamevariablesso that no variable appears in more than one clause. (Note that this applies only to variables.)

Our example:
p(x, y)

¬q(f(x, y), f(x, y))

becomes
p(x1, y1)

¬q(f(x2, y2), f(x2, y2))

4



3 Clauses

The result of running the algorithm is that the original FOPLwff becomes one or moreclauses. Separate clauses are
implicitly conjoined together. (This follows from step 7 ofthe algorithm.)

Each clause is a disjunction of literals. As such, the order of the literals is irrelevant, and we can remove duplicates.
(The fact that order is irrelevant follows from the fact thatW1∨W2 ≡ W2∨W1; the fact that we can remove duplicates
follows from the fact thatW ∨ W ≡ W .)

If a clause contains only one literal, it is called aunit clause.

We will sometimes want to write a clause that contains no literals. This is called theempty clauseand it is written2.

4 Exercises

1. Convert the following wffs to clausal form.

(a) ∀x∀y(p(x, y) ⇒ q(x, y))

(b) ∀x∀y(¬q(x, y) ⇒ ¬p(x, y))

(c) ∀x∀y(p(x, y) ⇒ (q(x, y) ⇒ r(x, y)))

(d) ∀x∀y((p(x, y) ∧ q(x, y)) ⇒ r(x, y))

(e) ∀x∀y(p(x, y) ⇒ (q(x, y) ∨ r(x, y)))

(f) ∀x∀y(p(x, y) ⇒ (q(x, y) ∧ r(x, y)))

(g) ∀x∀y((p(x, y) ∨ q(x, y)) ⇒ r(x, y))

(h) ∀x∃y(p(x, y) ⇒ q(x, y))

(i) ¬∀x∃y(p(x, y) ⇒ q(x, y))

(j) (¬∀x p(x)) ⇒ (∃x p(x))

2. In this question, use the following ‘key’ for the unary predicate symbolss andc and the binary predicate symbol
u:

s(x) : x is a student
c(x) : x is a computer
u(x, y) : x usesy

(a) Convert the following sentence of English into FOPL:

Every student uses some computer, but at least one (specific)computer is used by every student.

(b) Convert your FOPL into clausal form.

5


