Clausal Form Logic

1 Introduction

Over the next few lectures we introduce the topics necessaag understanding of the proof theory at the heart of a
lot of knowledge-based systems. It's also the proof thesgdiby many automated theorem-proving systems, by logic
programming languages such as Prolog and by many deduetigbases. In this lecture, we introduce a canonical
form (a standard form) for wffs.

The canonical representation is callddusal form Using a canonical form we can get a sound and complete proof
theory which is amenable to automation. In the worst casepérformance is no better than any other sound &
complete proof theory, but it seems to perform well in piEetiTo be more precise, for CFL, if we use refutation
instead of deduction, we can get a proof theory that is soundr&plete but has

« only one inference rule, and

* no logical axiom schemata.

Clausal Form Logic is as expressive as FOPL. And, in factetheven an algorithm for taking wffs in FOPL and
converting them talausesin CFL. But wffs of FOPL and their corresponding clauses irLGlfe not necessarily
logically equivalent. In other words, the original wff arftetcorresponding clauses are not necessarily true in gxactl
the same models.

Instead, the translation preserves a weaker propertgfisaility and unsatisfiability. If the original wff is (urgsisfiable,
then the clauses will also be (un)satisfiable. This will tout to be OK because we will build refutation proofs (proof
by contradiction), where finding inconsistency (unsatisfigy) is what matters.

2 The Conversion Algorithm

Here, in summatry, is the algorithm for converting an ordyrfe®PL wff into a set of clauses in CFL:

1. Relabel clashing variables

2. Eliminate= and<

3. Move- inwards

4. Skolemise existentially quantified variables
5. Drop universal quantifiers

6. Distribute disjunction over conjunction

7. Rewrite as clauses

8

. Standardise variables apart

—in that order!

Here’s the algorithm again with explanation and an example.

Relabel clashing variables

Rename variables so that each quantifier has a unique \@riablmake sure that the same variable is not quantified
more than once within the same wff.

VaVy-(p(z,y) = Yy a(y,y))
becomes

VaVy-(p(z,y) = Yz q(2, 2))

(To avoid having to remember this step, it's a good idea neverrite wffs with clashing variables in them!)

Eliminate = and <

Use:
(W = Wa)
(VVl =4 PVQ)

(~ W7 Vv W2)
(W1 = Wa) A (Wy = W)

In our example,
Vay=(p(z,y) = Vzq(z, 2))

becomes
VaVy—(—p(z,y) VVzq(z, z))

Move - inwards

Keep moving negation operators until we are only negatinmat

Use:
VXW = 3IX-W
-IXW = VX-W
(Wi vWe) = (=W A-Ws) (de Morgan)
(Wi AWy) = (=W, V-Ws) (de Morgan)
-—W = W
Our example
VaVy—(=p(z,y) V Vzq(z, 2))
becomes

Vavy(-—plz, y) A —Vzq(z, 2))

which then becomes
Vavy(p(z, y) A Jz—q(2, 2))

Skolemise existentially quantified variables

Replace existentially quantified variables with Skolenmzr

If 3Y occurs in the wff and it appears within the scopewdfn > 0) universal quantifiers X,VXo, ..., VX, then
choose a new:-ary function symbolF' distinct from all the others in the wff, replace all occurten of Y with
F(X1,Xo,...,X,), and strike out th&Y". For the case whene = 0, a 0-ary function is chosen: a O-ary function is
the same as a constant symbol.



Schematically, this is what this step does:

a. AYVXy,...,VX.p(X1,...,X,,Y)
becomes
VX1, VXp(Xy, ., X €)

b. VX1,... VX, 3Vp(X1,..., X,,Y)

becomes
VX1, VX (X X, f(X e, X))

wherec is a new constant symbol arfds a new function symbol

Our example:
VaVy(p(z,y) Adz-q(z, 2))

becomes

Vavy(p(z,y) A—a(f(z,y), f(z,9)))
Here’s another example:
Jw(p(w) AVzIyIz q(w, z,y, 2))
becomes
p(e) AV g(c,z, g(x), h(z))

Note that this is the step that means that we are only prespun)satisfiability. This is the step that is not based on
equivalences.

Drop universal quantifiers
Now our wifs only contain universally quantified variablésid because of the renaming of variables done in step 1,
all the variables are different. We can drop the quantifiatsteave the variables as implicitly universally quantified.

Our example:
Vavy(p(z, y) A —q(f(2,y), f(z.y)))
becomes

p(z,y) A —q(f(z,y), f(z,9)))

Distribute disjunction over conjunction

Convert the wff toconjunctive normal formA wff is in conjunctive normal form iff it is a conjunction afisjunctions
of literals. (Recall that a literal is an atom or a negatedra}o So a wff is in conjunctive normal form if it has the
following form:

(Pl\/Pz\/...\/Pl>/\(Q1\/Qz...\/Qm>/\.../\(R1\/RQ\/...\/Rn)

where eactP;, Q; andR; is a literal (an atom or a negated atom).

Our example:
p(@,y) A=q(f(z,y), f(z,y)
is already in conjunctive normal form, so there is no chargelting from this step.

In general, we would use the following:

(W v (Wo AW3))
(Wy AW2) Vv VV;}))

(W1 v Wa) A (W1 v W)
(W1 VvV W3) A (W2 vV IW3))

Also, associativity can be useful:

(W1 V (W vV W3))
(Wi A (Wa A Ws3))

(Wy Vv Wa) v W)
(W) A W) A W3)

Wi v WyVv Wy
Wi AWa A W3

Here’s an example:
pV(gATANsA(tVu))

becomes
(eVa)AlpVr)ApVs)AlpVivu)
Another example:
pA(qVTVsV(tAu)

becomes
pA(@VTrVsVE)A(qgVTrVsVu)

Rewrite as clauses

Split the wff up into bits (one per conjunct). Each bit is meéal to as alause

In general,
(PLV...VP)AN(@Q1V ...V Qm)AN(R1V...VRy)
becomes
P V...VPF
Q1V...VQn
RiV...VQ,
Our example:

p(z.y) A —q(f(2,y), f(z,y))
becomes two clauses
p(z,y)

—q(f(z,y), f(2,9))

Standardise variables apart

Renamevariablesso that no variable appears in more than one clause. (Ndtthteapplies only to variables.)

Our example:
p@,y)

—q(f(z,y), f(2,9))

becomes
p(z1,1)

—q(f(x2,y2), f(2,2))



3 Clauses

The result of running the algorithm is that the original FORIf becomes one or morgauses Separate clauses are
implicitly conjoined together. (This follows from step 7 thie algorithm.)

Each clause is a disjunction of literals. As such, the ordéheliterals is irrelevant, and we can remove duplicates.
(The fact that order is irrelevant follows from the fact thigt v 1, = W,V Wy ; the fact that we can remove duplicates
follows from the fact thatV v W = W)

If a clause contains only one literal, it is calledait clause

We will sometimes want to write a clause that contains nedlge This is called thempty clausend it is writtenO.

4 Exercises

1. Convertthe following wfifs to clausal form.

(@) VaVy(p(z,y) = q(z,y))

(b) VaVy(—q(z,y) = —p(z,y))

(¢) VaVy(p(z,y) = (a(z,y) = r(z,y)))

(d) Vavy((p(z,y) A g(z,y)) = (2, y))

(&) VaVy(p(z,y) = (a(z,y) vV r(z.y)))

() Vavy(p(z,y) = (a(z,y) Ar(z,y)))

(@) Vavy((p(z,y) Va(z,y)) = (2, y))
)

(h) Va3y(p(z.y) = q(z,y
() —Vz3y(p(z,y) = q(=,y))
(i) (=Vzp(z)) = Fzp(z))

2. Inthis question, use the following ‘key’ for the unary gieate symbols andc and the binary predicate symbol
u:

s(x) © xisastudent
c(x) . xis acomputer
u(z,y) @ xusesy

(a) Convertthe following sentence of English into FOPL:
Every student uses some computer, but at least one (speoifigjuter is used by every student.
(b) Convert your FOPL into clausal form.



