Metatheory and Proof Theories

Knowledge representation and reasoning are fundamentdl We have looked briefly at knowledge representation.
Now, we look at reasoning.

We need to know what it means to say that one Wiffollows from’ some set of wffsb. This definition will have
something to do with the semantics of FOPL, and we discusstite first section below (Metatheory). But, we will
see that the definition doesn’t give a basis on which we couild la practical, automatable way of doing reasoning.
We make a start on doing this in the second section (Proofyleo

1 Logical Metatheory

Recall the notion of a modeM:
M = (U,T)

comprising a universe of discoudeand an interpretation functicgh Recall also that the semantic value or denotation
of a term, atom or wffx with respect to a model is written:

HO‘]] M

Once models are defined, we can define satisfiability, ufisdiity, validity and, most importantly, logical conse-
quence.

1.1 Satisfiability, Unsatisfiability and Validity
Let W be a wff and)M be a model.

« Awif IV is satisfiableiff there exists some modal/ such thafiw]* = T.
Examples of satisfiable wffs are:
p(a,b)
p(b,a)
Va(q(z) = r(z))

« Awff W is unsatisfiableff there exists no model such thgit’]* = T.
Examples of unsatisfiable wffs are:
p(a,b) A —p(a,b)
~(p(b, a) = p(b,a))
« Awff W is valid iff, for every modelM, [W]* = T. (Other terminology: ifi’ is valid, other authors might
sayW is unfalsifiableor IV is atautology)
Examples of valid wffs are:
p(a;b) vV —p(a,b)
p(b,a) = p(b,a)

1.2 Logical Consequence

A set of wffs® has wffI¥ as alogical consequendé every model that make® true also make#/ true. (Or, if you
want it in different words, there is no model that makes alélements of true but make$l’ false.)

We write this
=W

(Other terminology: ifiV is a logical consequence &, other authors might say th#t is an entailment of® or that
® entailsIV or thatTV logically follows from® or thatW is logically implied by®.)

Note that the definition doesn’t say anything about modelstirch one or more of the wffs i are false. These
models are not relevant to deciding whettief= 1.

An example of a logical consequence:

{Vz(p(z) = ¢(2)),p(a)} k= g(a)

It does not matter what, ¢ anda are interpreted asf the members of the s§vx(p(z) = ¢(x)),p(a)} aretrue in
M, theng(a) will be true in)M.

An informal demonstration of this follows. Suppose in onedelp denotes the set of mepdenotes the set of mortals
anda denotes Socrates. Then, if it is the case that all men areats@hd Socrates is a man (i.e {fz(p(z) =
q(z)),p(a)} is true) then it follows that Socrates is mortal (igéa) is true). Suppose in another mogedienotes the
set of elephants;, denotes the set of grey things amdenotes Clyde. Then, if it is the case that all elephantse g
and Clyde is an elephant (i.e.{f/z(p(z) = q(x)), p(a)} is true) then it follows that Clyde is grey (i.g(a) is true).
Suppose in yet another modeblenotes the set of elephanisienotes the set of yellow things aadienotes Clyde.
Then, if it is the case that all elephants are yellow (neverdhtihat it isn’t in our worldif it is the case...) and Clyde
is an elephant, then it follows that Clyde is yellow. And so on

Note how the definition of logical consequence referaltanodels which make true. This suggests that in order to
determine whethél is a logical consequence of a set of wffs we would have to ch#édhterpretations of the wffs
for all universes. This is possible in some logics. For exampe can do it for propositional logic (i.e. logic without
variables and functions). In propositional logic, checkall interpretations is the same as constructing a truiteta
since each row of the table is an interpretation. For examyecan show that

{Pva.adtE(=PAg VP

premisses| conclusion
plallpvala| (=pAgVp
T|T T T T
T|F T F T
F|T T T T
FIF| F |F F

(=p A q) V pis alogical consequence §p V g, ¢} because it is true in all cases (interpretations) in whithy andg
are true (i.e. rows 1 and 3).

In other logics, determining logical consequences canmgeneral be done by inspecting models. In particular, it is
not possible in FOPL because there may be an infinite numhiaetepretations (for an infinite number of possibly
infinite universes). We clearly need an alternative apgroac



2 Proof Theories for FOPL

Given the impossibility of checking infinite numbers of mé&xjeve need some apparatus that enables reasoning to
take place at a purely syntactic level, before interpretetiare considered.

This apparatus is calledmoof theory and it is the third component of every logic (alongsideytstax and semantics).
(Other terminology: other authors might refer to a proobifyeas a (formal) deduction system, an inference system
or a logical calculus.) Proof theories can be broadly clieskinto deduction systems and refutation systems. We look
at the former first.

2.1 Informal Presentation

A proof theory enables us to derive conclusions from a setffsf lay syntactic operationalone. We manipulate the
wffs without reference to their semantics. If the manipolatules are ‘right’ (in a sense to be explored later), the ne
wffs we generate will, in fact, be logical consequences efdhginal set of wffs. The process is ‘mechanical’ and
thus amenable to automation.

A proof theory comprises a finite setiofference rulesind a finite set ofogical axiom schemata

Inference rules: An inference rule comprises a set of patterns catiedditionsand another pattern called toen-
clusion Here’s an example of a rule called-elimination (although you might know it as Modus Ponens):

Wi, Wy = Wy
Wa

Above the line are the conditions; below is the conclusiégiol have wffs that match the conditions, then you
can, in a single step, derive a wff that matches the conaiusio

Example. Suppos@ = {raining = (needMacv needBrolly, raining}. Then we can derivaeedMacv
needBrolly

Logical axiom schemata: A logical axiom is another name for a valid wff. A logical aricschemata is a ‘template’
for a valid wff: if you substitute wffs into the template, yget a valid wff.

Here are examples:
Wy = (VVQ = VVI)

Wy = (W = W) = (W) = Wa) = (W) = Wa))
(W) = ~Wa) = (W = W) = —W3)
(W1 = =) = (W) = W) = W)

If you substituteraining for 1, andneedMacv needBrollyfor W5 in the first logical axiom schemata, you
produce the logical axiom (valid wff)

raining = ((needMac/ needBrolly = raining)

(You can confirm that this is a valid wff by drawing up a truéible and noting that the wff always evaluates to
true. (Exercise!))

Given a set of inference rules, a set of logical axiom scharaat! a set of premisseBb, aderivationof some wifiV
from @ is defined to be a finite sequence of wi§ , W5, ..., W,, such that¥ = W,, and for each (1 < i < n)
either

« W, is a premiss (a member &), or

» W, is alogical axiom (produced by substituting wffs into thgitmal axiom schemata), or

» W; is the result of applying an inference rule to previous wiffstie sequence.

If there exists a derivation dV from ® then we say thalV’ is derivablefrom @, and we write this as:

oW

(Other terminology: ifi” is derivable from®, other authors might say that it is deducible or provableffia)

There are many choices of proof theory. They offer differgets of logical axiom schemata (including none) and
different sets of inference rules. We'll look at two examfaepropositional logic, and then we'll discuss criteriath
proof theories can be evaluated against.

2.2 A Hilbert-style proof theory for propositional logic
This proof theory has the following components:

Logical axiom schemata:
Axiom schemata 1{-W, = W;) = W,
Axiom schemata 2W; = (=W, = Ws)
Axiom schemata 3{W; = Ws) = (W2 = W3) = (W) = W)

Inference rules: There is only one rulez-elimination (Modus Ponens):
I/Vl, Wy = Wy
Wa
For your premisse®, you must restrict yourself to using and— only. (This is no loss since a wff that contains the
other connectives can always be converted into an equivafénsing only the given three.)

Exercise. Given that if it is raining then | get wet, and if | get wet theodtch cold, show that if it is raining then |
catch cold.

Finding a derivation is a search process. At each step, #rerdifferent options that can be tried. We have to make
choices, but if our choices don’t work out, we may need to cbaxk and try the other options.

The search space can be huge. In particular, there is anténfinmber of wffs we can substitute into each logical
axiom schemata.

And this is just a proof theory fgoropositional logic A similar proof theory foFOPL, which is a more expressive
logic, has a far worse search space.

2.3 A natural deduction system for propositional logic

In this alternative proof theory, there are no logical axgchemata. But there are many more inference rules.
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Exercise. Given that if it is raining then | get wet, and if | get wet theodtch cold, show that if it is raining then |
catch cold.

Again, finding a derivation is a search process. This timehase to choose between numerous possible inference
rules. In some cases, we have to choose what wffs to assume.

The upshot again is that we have here another vast searah spac

2.4 Soundness and Completeness

A proof theory derives wifs using syntactic operations alomithout reference to the semantics. We could invent a set
of logical axiom schemata and inference rules that licemsa quite bizarre inferences. However, if a proof theory is
to be useful, we typically require that the wffs we can denuest tie in with the logical consequences. There are two
measures of thisoundnesandcompletenesgWe will come across the word ‘completeness’ agsin when iseuds
search. Unfortunately, its use in logic is a related butlgutifferent use.)

Soundness:A proof theory issoundif
® + W implies® = W
i.e. if all the wffs that can be derived frof are also logical consequencesiaf The proof theory can't derive
wffs that aren’t logical consequences.
To see an unsound proof theory, imagine a proof theory thaaaus the following inference rule:
7. 7.

— -puFF L= Wa. IV :2:,“’ Uk

V1

Wifs derived from this rule are not necessarily logical emsences. For example, we can use this rule to show
{rain = wet wet} - rain. But we know that{rain = wet wet} |~ rain. (Check it with a truth-table!)

The proof theories given in the previous two subsectiondatie sound.
Completeness:A proof theory iscompletaf
P = W implies® - W

i.e. every logical consequence ®fcan be derived fron®. The proof theory doesn't fail to derive any of the
logical consequences.

The proof theories given in the previous two subsectiondatie complete. To see an example of an incomplete
proof theory, imagine dropping one of the logical axiom sohta or one of the inference rules.

Soundness is essential, but completeness might be satiifiéd in an effort to reduce the search space and thereby
improve the efficiency of an automated proof theory. We mégpecially sacrifice completeness if doing so loses us
only a few ‘obscure’ inferences.

But before sacrificing these things, there’s an alternatinethe worst case, this alternative is no better, but it does
seem to give good typical case performance. The alternatiuieh we look at in the next few lectures, is to use a
refutation system on a canonical logical form.



