Knowledge Bases and Knowledge Engineering

1 Knowledge Bases

Our agent needs to represent and reason with large quamiitimowledge about the world. This knowledge is keptin
aknowledge baseThis contains a set of statements about the world, expt@sseme logic/knowledge representation
language. Reasoning with this knowledge is done biynference engineAn inference engine is a program that draws
conclusions from the knowledge in the knowledge base; Itimiplement one of the logic’proof theories

Any system that contains both a knowledge base and an inferemgine may be calledkaowledge-based system
(KBS). Such a system will offer (at least) two methods in bl interfacet el | andask. t el | is used to insert
a new wfif into the knowledge basask is used to query the knowledge base.

Inference
Engine
ask
tell
Knowledge
Base

Knowledge-Based System

A database systemiso has methods that are seemingly equivalenetfol andask (e.g.] NSERT andSELECT in
SQL respectively). While there are no clear-cut differenbetween KBS and database systems, it may help us to
understand KBS better if we try to draw some distinctions:

« One difference is in the expressiveness of what candld ed. A typical relational database, for example,
can only store data as rows in tables. Logically, it can otdyeswffs that are atoms whose arguments are all
constant symbols. A KBS is less restrictive in the wffs it ctore.

« Perhaps more importantly, there is a difference in the \ay database systems and KBS respond to queries
that they have beemsked. In both cases, the answers must follow from what hasbekhed, but, in the case
of KBS, extended chains of reasoning might be used to answeeyueries. The answer may only be implicit in
what wagt el | ed.

(One should note at this point that there is a large body @aeth into systems called ‘deductive databases’. These
systems blur the distinction between database systemsB8d K

2 Knowledge Engineering

A domainis some aspect of the world. Many current Al agents are dosétific: they focus on one (or a very small
number) of aspects of the world, e.g. meningitis diagnosis.

We refer to the process of building a knowledge base for omeare domains aknowledge engineeringt is carried
out by Al expertsknowledge engineers conjunction with people who are familiar with the domalomain experts
(e.g. medical consultants). The knowledge engineers nmewtrbe acquainted with the domain, usually by inter-
viewing the domain experts, and this part of knowledge eswiimg is known aknowledge elicitatioror knowledge
acquisition Then, formal representations can be written and placedliet knowledge base.

The process of knowledge engineering involves such steps as

Ontological engineering

Decide what to talk about. The knowledge engineer must first determine what is relemadhirrelevant to the
system s/he wishes to build. What kinds of things exist ia ttimain? E.g. is time relevant? Are events,
states and processes relevant or are we interested onlysicphobjects? Which physical objects are we
interested in? Are all objects atomic or can they have subpéitc.

Decide on a vocabulary of predicate symbols, function symii® and constant symbols.For example, should
some relationship be represented as a function symbol opesiacate symbol? For example, to represent
“The Sun is yellow; we could choose between

« yellow(sur),
« colour(sun yellow)
« propertyOfsun colour, yellow)
« equalgcolourOfsun), yellow)
and any number of further options.
Class exerciseGive some advantages/disadvantages for these options.

Axiomatisation

Encode general knowledge Write wffs to capture relationships between concepts.
Encode specific knowledgeWrite wffs to capture specific instances.

We'll look at an example that uses these four steps in theleetdre. But, in the current lecture, we’'ll take a much
simpler example domain so that we can practice writing wifs.

3 An Example Domain

Before we start on the example, let's check our ability tovestitwo simple English sentences into FOPL.
Class exerciseWhich are the correct translations into FOPL?
» Every person is happy.

Vz(persor{z) A happyz))
Vz(persor{z) = happyz))

* Some person is happy.
Jz(persoriz) A happyz))

Jz(persor{z) = happyz))

Now we’ll encode a few facts about the domain of family relaships. We'll use the following ‘key’ for the unary
predicate symbolmaleandfemale the binary predicate symbaop&rent child, grandparentsibling andequals and
the unary function symbofatherandmother

malgz) : rismale

femaldx) . xisfemale
parentz,y) ;. xisaparentof
child(z, y) : wxisachild ofy
grandparentz,y) : xisagrandparent of
sibling(z, y) : zisasibling ofy
equalgz, y) 1 xisequal toy
father(z) . the father oft
mothefz) 1 the mother oft

(For tidiness, we'll allow ourselves to write = y using= as an infix predicate symbol in place of the more cumber-
some and less familiar but syntactically more accuegjealgz, v).)

Here are some facts we'll translate into logic.

« Male and female are disjoint sets.

« Parent and child are inverse relationships.
« A grandparentis a parent of one’s parent.
« One’s mother is one’s female parent.

« Asibling is another child of one’s parents.

And so on!

In fact, strictly we can't just usequals(or =) without also tackling the domain of equality. We need toteviffs to
capture the following facts:

« Equality is reflexive

« Equality is symmetric

« Equality is transitive
VaVyVz((z =y ANy =2) =z = z2)
« Equality is substitutive
VaVy((malgz) Az = y) = malgy))
VaVy((femaléz) A z = y) = femaldy))

and so on for all other predicate symbols and function symsbol
(There is an alternative to doing this, and this is to revisesemantics for FOPL. Within a revised semantics, we

can give theequalspredicate symbol a special, fixed interpretation. This \@aemove the need to axiomatise the
reflexivity, symmetry, transitivity and substitutivity @perties.)

4 What is a good set of wffs?

The statements that are in the knowledge base initially @metimes called@xioms They are our basic facts about
the domain. It is from these that the inference engine detker facts (sometimes calldieoremy The question
is: how do we know when we've got a good set of axioms in our Kedge base?

Well, obviously, we need to writenough’wifs. We want to keep writing axioms until all true facts abour domain
(that we deem relevant) follow from the axioms, and onlygabgt are true in the domain follow from the axioms.

But mathematicians often try to writerainimal set of axioms. They try to make it the case that they neveewrit
redundant axioms. A redundant axiom would be one that coelddrived from the other axioms. They aim for a
minimal set from which all other facts about the domain (thay deem relevant) can be derived.

Some knowledge engineers strive for similar elegance whpresenting knowledge about a domain. However, this
is not strictly necessary: our goal is not elegance. Effigyesf reasoning is often much more important. And here the
issue becomes less clear-cut. On the one hand, the morefseisthe domain that we represent explicitly (including

redundant ones), then the less reasoning we need to do, shucid improve efficiency. On the other hand, the more
axioms in the knowledge base (including redundant onesi, the more ‘stuff’ there is that the inference engine has
to plough through, which may worsen efficiency. Some comiiserns needed.

Exercise

In addition to the predicate symbols and function symbotsiesarlier, we’ll now also use the following:

brother(z,y) : xisabrotherofy
siste(z, y) . xis asister ofy
aunt(z, y) ;. xisanauntofy
uncle(z, y) . wzisanuncle ofy
cousin(z, y) : xis a(first) cousin of
ancesto(z,y) : xisanancestor of

Now translate the following statements into FOPL:

. Your brother is your male sibling.
. Your sister is your female sibling.
. An auntis a sister of a parent.

. An uncle is a brother of a parent.

. Cousins are children of aunts or uncles.

o g A~ W N P

. One’s ancestors are one’s parents or ancestor’s of oaEss. (A recursive definition!)

