Logical Representations

1 Motivation

We have been discussing memories and world models. Th eran®btudied in depth (the lawn-mower) used an
analogical representatianBut, for agents that live in ‘rich’ environments (e.g. ptogd buildings or complex virtual
worlds such as the Internet), analogical representatiensféen noexpressiveenough. They do not lend themselves
well to expressing the following kinds of knowledge aboatss of the world:

« General laws and other statements that apply across maegtebE.g.:

— All trees are obstacles to lawn mowers.
— All unsupported objects fall to the ground.
— If you change the location of any container, then any objiectise container change location too.
« Indefinite statements (e.g. disjunctions, negative statds that say what isn’t true without saying what is true,
and existentially quantified statements that fail to idgrttie objects involved). E.g.:
— The key is either on the desk or in the drawer.
— There is no tree in front of the lawn mower.
— Some of the books are on the table.

It's very hard to come up with analogical representatiortseiadle these, and in those cases where iconic representa-

tions are possible, they are often far from concise.

By contrastjogical representationsan be expressive enough. What's more, logical represensedllowinference
of properties of the world that have not been stated exflicit

2 Whatis a Logic?
I use the wordsogic andknowledge representation langua@éRL) interchangeably. Every logic (or KRL) has:

A syntax: The legitimate symbols of the language and the rules thahel¢fie legitimate configurations of these
symbols.

A semantics: Rules that define the meanings of the symbols, the meaningenéigurations of symbols and certain
relationships that hold between different configuratiang.(whether one contradicts another).

One or more proof theories: Rules that define the inferences that can be drawn. (Theseusésyntactic operations
only.)

There are numerous logics (KRLs), many of them invented bse8éarchers. They may differ in their expressiveness
but also in the efficiency of their proof theories. (Gengrdlie more expressive, the less efficient.) Al researchers
will choose to use a logic that gives them the best tradefadkpressiveness and efficiency they need for the task in
hand.

We're going to look at one particular logifirst-order predicate logic (Other ways of referring to this logic are:
FOPL, first-order logic, FOL, first-order predicate calaiand FOPC.) This is the main choice in Al. It is maximally
expressive. However:

» Some concepts may not be expressed especially concisiythvis logic. Hence, Al researchers and others
have invented more exotic logics to express these conceptsconcisely. But statements in these more exotic
logics can always be ‘reified’ into FOPL.

» Reasoning with FOPL may not always be especially efficienterever possible, Al researchers try to manage
with sublanguages of FOPL, where the full expressivenesstiexploited.

3 The Syntax of FOPL

Statements in FOPL are calleell-formed formulagwffs). To define wffs, we must defitrermsandatoms

3.1 Terms

1. Everyconstant symbak a term, e.ga, b, ¢, clyde gertie

2. Everyvariableis a term, e.gz, y, 2, zo, 21, T2

3. For anyfunction symboF" of arity n and anyn termsTy, Ts, . .., T,,, then
F(Ty,Ts,...,Ty)

isaterm. E.qg. iff is a function symbol of arity 1 anglis a function symbol of arity 2, thefi(a), g(b, ¢), g(f(a), ¢)
andg(f(f(a)),z) are terms.

4. Nothing else is a term.

3.2 Atoms
1. For anypredicate symbaP of arity n and anyn termsT, T, ..., T,, then
P(T17T2~,<~~7Tn)

is an atom. E.g. ip andelephantre predicate symbols of arity 1, apdndlikesare predicate symbols of arity
2, thenp(a), elephanfclyde), ¢(a, f(a)) andlikes(clyde gertie) are atoms.

2. Nothing else is an atom.

Note that predicate symbols, function symbols, variables@nstant symbols should be drawn from disjoint sets to
avoid confusion.

3.3 Well-Formed Formulae (wffs)

1. Every atom is a wff.

2. For any variableX and any wffiV, (VXW) and (3XW) are wffs. They are referred to agiantified wifs
(VXW) is said to bauniversally quantified(3X W) is said to beexistentially quantified

3. Forany wffsi, W; andWs, the following are also wifs(—1¥) (negation)(W; AW>) (conjunction) (W, VI¥s)
(disjunction),(W; = W) (conditional) andW; < W5) (biconditional).

4. Nothing else is a wif.



E.g. the following are wffs: elephant(clyde) —likes(clyde gertie), elephanfclyde) Vv likes(clyde gertie) and e Jz(p(z) V(¢ = Yy(r(z,y))))
Va(p(z) = (q(b; ¢) Ag(f(a), z))). the scope ofiz is p(z) V (¢ = Vy(r(z,y)))
the scope offy is r(z,y)

While rules 2 and 3 above introduce parentheses around wéswill only write them when they are helpful for all occurrences af andy are bound.

disambiguation purposes. In wffs where we can do withounthee won't write them.

Class exercise. What happens if there aren’'t enough parentheses? Diffeomks use different conventions, so be careful. I'll try to

put enough parentheses in, but if | don’t, then go for theoveest scope possible. E.g. in
a is a constant symbol

s isaunary function symbol e p(z) V (¢ = Yyr(z,y))
u is a binary function symbol ) )
e isaunary predicate symbol the scope of is p(z) and that ofy is r(z, y).

g isabinary predicate symbol In this course, we will not write wffs that have free variable

Which of these are wffs?

Exercise
1. Vze(x)
2. Jy(g(a,y) Ne(z)) In these questiong,andq are binary predicate symbolg,is a unary function symboy; is a binary function symbol,
anda andb are constant symbols, y, z and subscripted versions of these will be used as variables.
3. Va3y(g(x, a))
4. VYz3y(g(z, a) V g(y, ) 1. Indicate, by writing_egal or lllegal, which of the following are well-formed formulae of firstaer predicate
logic. Where you think they aridlegal, briefly explain why.
5. g(s(a,a),a) - »
6. e(u(a, s(a))) = g(a,a) (@) Va(p(a, f(f(g(a,b)))) = Fypa, f(f(9(b, a)))))
AR g (b) Va¥y(p(a,b) v Va(a(f(), £ (1)), p(b,a)))
7. 3a(u(a, 2) V 5(x)) (©) Ya¥y(p(a,b) v ¥a(q(f(a, b)) A p(b, a))
8. Va(e(z) Ve(s(2))) 2. Indicate, by writingYesor No whether the following wifs of first-order predicate logicrtain free variables
’ " Where you think that they do, also indicate which variableusrences within the wffs are free.
9. —(e(x) Ae(s(x)))
10. Ve e(s(a)) @) Ya(p(a, f(x)) Ap(z.b) = plz. f(g(b,2))
11. g(a.e(a)) (b) 3y(aly,y) = (B aly, =) v Ve q(z,y)))
P (©) Va(@a(va(3e (p(x, 2) = gz, ) Ap(z,2)) V oz, 7)) & ~p(, )
12. Va(g(u(z, ), s(x)) V g(s(a), u(a, a)))

4 Quantifier Scope

Thescopeof a quantifier ¢, 3) is the subwff to which the quantifier applies. With plentypafrentheses, the scope will
be apparent. An occurrence of a variable in a wiéndif it falls within the scope of a quantifier for that variable.
Otherwise, that occurrence of the variablérée

For example:

e Jz(p()) V (g = Vy(r(z,y)))
the scope oBz is p(x)
the scope offy is r(z, y)
the first occurrence af is bound; the second is free
the only occurrence af is bound.



