
Logical Representations

1 Motivation

We have been discussing memories and world models. Th example we studied in depth (the lawn-mower) used an
analogical representation. But, for agents that live in ‘rich’ environments (e.g. physical buildings or complex virtual
worlds such as the Internet), analogical representations are often notexpressiveenough. They do not lend themselves
well to expressing the following kinds of knowledge about states of the world:

• General laws and other statements that apply across many objects. E.g.:

– All trees are obstacles to lawn mowers.

– All unsupported objects fall to the ground.

– If you change the location of any container, then any objectsin the container change location too.

• Indefinite statements (e.g. disjunctions, negative statements that say what isn’t true without saying what is true,
and existentially quantified statements that fail to identify the objects involved). E.g.:

– The key is either on the desk or in the drawer.

– There is no tree in front of the lawn mower.

– Some of the books are on the table.

It’s very hard to come up with analogical representations tohandle these, and in those cases where iconic representa-
tions are possible, they are often far from concise.

By contrast,logical representationscan be expressive enough. What’s more, logical representations allowinference
of properties of the world that have not been stated explicitly.

2 What is a Logic?

I use the wordslogic andknowledge representation language(KRL) interchangeably. Every logic (or KRL) has:

A syntax: The legitimate symbols of the language and the rules that define the legitimate configurations of these
symbols.

A semantics: Rules that define the meanings of the symbols, the meanings ofconfigurations of symbols and certain
relationships that hold between different configurations (e.g. whether one contradicts another).

One or more proof theories: Rules that define the inferences that can be drawn. (These rules usesyntactic operations
only.)

There are numerous logics (KRLs), many of them invented by AIresearchers. They may differ in their expressiveness
but also in the efficiency of their proof theories. (Generally, the more expressive, the less efficient.) AI researchers
will choose to use a logic that gives them the best trade-off of expressiveness and efficiency they need for the task in
hand.

We’re going to look at one particular logic,first-order predicate logic. (Other ways of referring to this logic are:
FOPL, first-order logic, FOL, first-order predicate calculus and FOPC.) This is the main choice in AI. It is maximally
expressive. However:
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• Some concepts may not be expressed especially concisely with this logic. Hence, AI researchers and others
have invented more exotic logics to express these concepts more concisely. But statements in these more exotic
logics can always be ‘reified’ into FOPL.

• Reasoning with FOPL may not always be especially efficient so, wherever possible, AI researchers try to manage
with sublanguages of FOPL, where the full expressiveness isnot exploited.

3 The Syntax of FOPL

Statements in FOPL are calledwell-formed formulae(wffs). To define wffs, we must definetermsandatoms.

3.1 Terms

1. Everyconstant symbolis a term, e.g.a, b, c, clyde, gertie

2. Everyvariable is a term, e.g.x, y, z, x0, x1, x2

3. For anyfunction symbolF of arity n and anyn termsT1, T2, . . . , Tn, then

F (T1, T2, . . . , Tn)

is a term. E.g. iff is a function symbol of arity 1 andg is a function symbol of arity 2, thenf(a), g(b, c), g(f(a), c)
andg(f(f(a)), x) are terms.

4. Nothing else is a term.

3.2 Atoms

1. For anypredicate symbolP of arity n and anyn termsT1, T2, . . . , Tn, then

P (T1, T2, . . . , Tn)

is an atom. E.g. ifp andelephantare predicate symbols of arity 1, andq andlikesare predicate symbols of arity
2, thenp(a), elephant(clyde), q(a, f(a)) andlikes(clyde, gertie) are atoms.

2. Nothing else is an atom.

Note that predicate symbols, function symbols, variables and constant symbols should be drawn from disjoint sets to
avoid confusion.

3.3 Well-Formed Formulae (wffs)

1. Every atom is a wff.

2. For any variableX and any wffW , (∀XW ) and (∃XW ) are wffs. They are referred to asquantified wffs.
(∀XW ) is said to beuniversally quantified; (∃XW ) is said to beexistentially quantified.

3. For any wffsW , W1 andW2, the following are also wffs:(¬W ) (negation),(W1∧W2) (conjunction),(W1∨W2)
(disjunction),(W1 ⇒ W2) (conditional) and(W1 ⇔ W2) (biconditional).

4. Nothing else is a wff.
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E.g. the following are wffs: elephant(clyde), ¬likes(clyde, gertie), elephant(clyde) ∨ likes(clyde, gertie) and
∀x(p(x) ⇒ (q(b, c) ∧ q(f(a), x))).

While rules 2 and 3 above introduce parentheses around wffs,we will only write them when they are helpful for
disambiguation purposes. In wffs where we can do without them, we won’t write them.

Class exercise.

a is a constant symbol
s is a unary function symbol
u is a binary function symbol
e is a unary predicate symbol
g is a binary predicate symbol

Which of these are wffs?

1. ∀x e(x)

2. ∃y(g(a, y) ∧ e(x))

3. ∀x∃y(g(x, a))

4. ∀x∃y(g(x, a) ∨ g(y, x))

5. g(s(a, a), a)

6. e(u(a, s(a))) ⇒ g(a, a)

7. ∃x(u(a, x) ∨ s(x))

8. ∀x(e(x) ∨ e(s(x)))

9. ¬(e(x) ∧ e(s(x)))

10. ∀x e(s(a))

11. g(a, e(a))

12. ∀x(g(u(x, x), s(x)) ∨ g(s(a), u(a, a)))

4 Quantifier Scope

Thescopeof a quantifier (∀, ∃) is the subwff to which the quantifier applies. With plenty ofparentheses, the scope will
be apparent. An occurrence of a variable in a wff isboundif it falls within the scope of a quantifier for that variable.
Otherwise, that occurrence of the variable isfree.

For example:

• ∃x(p(x)) ∨ (q ⇒ ∀y(r(x, y)))
the scope of∃x is p(x)
the scope of∀y is r(x, y)
the first occurrence ofx is bound; the second is free
the only occurrence ofy is bound.
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• ∃x(p(x) ∨ (q ⇒ ∀y(r(x, y))))
the scope of∃x is p(x) ∨ (q ⇒ ∀y(r(x, y)))
the scope of∀y is r(x, y)
all occurrences ofx andy are bound.

What happens if there aren’t enough parentheses? Differentbooks use different conventions, so be careful. I’ll try to
put enough parentheses in, but if I don’t, then go for the narrowest scope possible. E.g. in

∃x p(x) ∨ (q ⇒ ∀y r(x, y))

the scope ofx is p(x) and that ofy is r(x, y).

In this course, we will not write wffs that have free variables.

Exercise

In these questions,p andq are binary predicate symbols,f is a unary function symbol,g is a binary function symbol,
anda andb are constant symbols.x, y, z and subscripted versions of these will be used as variables.

1. Indicate, by writingLegalor Illegal, which of the following are well-formed formulae of first-order predicate
logic. Where you think they areIllegal, briefly explain why.

(a) ∀x(p(a, f(f(g(a, b)))) ⇒ ∃y p(a, f(f(g(b, a)))))

(b) ∀x∀y(p(a, b) ∨ ∀x(q(f(a), f(b)), p(b, a)))

(c) ∀x∀y(p(a, b) ∨ ∀x(q(f(a, b)) ∧ p(b, a)))

2. Indicate, by writingYesor No whether the following wffs of first-order predicate logic contain free variables.
Where you think that they do, also indicate which variable occurrences within the wffs are free.

(a) ∀x(p(a, f(x)) ∧ p(x, b)) ⇒ p(x, f(g(b, x)))

(b) ∃y(q(y, y) ⇒ ((∃x q(y, x)) ∨ ∀x q(x, y)))

(c) ∀x(∃x(∀x(∃x (p(x, x) ⇒ q(x, x)) ∧ p(x, x))) ∨ q(x, x)) ⇔ ¬p(x, x)
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