Classification: Probabilistic Methods

We're going to begin our study of Al by looking at a task thatds the one hand, easy to understand and yet, on the
other hand, very widespread. The task is catledsification

1 Classification

In classification problemsghe task is to decide to which of a predefined, finite set afgaties an object belongs.

Note that the classes or categories are known in advance;ithe finite number of them; and, in fact, there is usually
only a small number of them. Each class or category has a nainieh we refer to as thelass label

We refer to the objects asstances

A classification system (or classifier) receives a desenipdif the instance to be classified; decides to which class the
instance belongs; and outputs the appropriate class MfgeWill assume that instances are described by values for a
set of attributes.

Here are some examples:

In a game, one character has to decide whether anotherctbraisafriend or foe, based on the appearance or
behaviour of the other character.

In a public building, a security system may allow accessieage areas of the building to employees but not to
visitors, determined by an analysis of images from a videneza.

In an email system, a spam filter decides whether an incomngil is spam or ham, based on the email’s
content and formatting.

In a language school, a decision agent must decide whethewdy-enrolled student will study at beginner,
intermediate or advanced level, based on the student'sipeahce in a language exam.

Classification may also be a subtask within other more caraggd tasks. For example, to understand human language
requires the ability to choose the correct meanings of anthig words; this is a classification task.

There are many, many ways to build classifiers. The firstifieaon methods we are going to study use probabilities.

2 Probabilities

2.1 Probabilities and joint probabilities

In probability theory, we talk ofandom variables A, B,.... These are just variables that can take on different
values. In our case, they will stand for features of our donodinterest (e.g. attributes of instances or the class of an
instance). The values of the random variables can be ofrdiffaypes: Boolean (e.gunny= true), numeric (e.g.
income= 60000, height= 1.73) or symbolic (e.gpollen = low). For simplicity, we will restrict our attention to
random variables whose values are discrete and finite.

Suppose is a random variable whose possible values{argas, . . ., ax }. Theprobability that attributed has value
a; is written P(A = a;). The probabilities must satisfy the following:

c0<PA=a)<1

e P(A=a)+P(A=ay)+...+ P(A=ay) =1

The joint probability that A = a; and B = b; is written P(A = a,, B = b;) (and similarly for joint probabilities
involving more than two variables). A variable can take ofyame value so

s P(A=a;,A=a;)=0if a1 #a;

2.2 Conditional probabilities

Theconditional probability ofA = a; givenB = b; is written P(A = a;|B = b;). Itis defined as follows:

P(A=a,B=b
P<A:"’f‘B:*’f>:W
-

This definition can be used whenevé(B = b;) > 0.

Suppose we have Boolean-valued varialileadacheandflu. And suppose”(headache= true) = 0.1, P(flu =
true) = 0.025 and P(headache= true flu = true) = 0.0125. Then, using the definition abové,(headache=
truglflu = true) = 0.5. As a visualisation, think of each point in the following Vediagram as a possible state of
affairs. To reflect the idea th@t(headache= true) = 0.1, the region wheréeadache= true covers 0.1 of the whole
area, and similarly for other probabilities/areas:

flu = true

headache = trug

It could be said thaP (headache= trugflu = true) measures the probability beadache = trueelative to the reduced
set of states in whicfiu = true.

If we multiply through byP(B = b;), the definition of conditional probability can be rewrittaa the following,
known as theroduct rule

P(A=a;, B=1b;) = P(A=a;|B=b;) x P(B=10)

2.3 Independence and conditional independence

A = q; is said to bendependenof B = b; if the probability of A = a; is not influenced by whethds = b; holds.
The definition is:A = a; and B = b; areindependenif

P(A=a;|B=0b;)=P(A=ua;)

or, equivalently,
P(B = b]|A = ai) = P(B = b]>

or, equivalently,
P(A=a;,B=0bj) = P(A=a;) x P(B=1bj)

The last of these will be useful to us.



Class Exercise How might we show diagrammatically tha¢adache- true andeyeColour= blueare independent?

SometimesA = a; and B = b; will not be independent in any absolute sense but they mapdependent when a
third factor is fixed. I'm sure, for example, if we could obitahe probabilities, we would find thahoeSize= small
andlanguageSkill= low are not independent: I'm sure we would find that if you havelsfeat then you are more
likely to have low language skills! But this is a spuriousat@nship that depends on a third, though unmentioned,
factor: age. Once age is fixed (‘given’), then the dependeisappearsshoeSize= smallgivenage = youngand
languageSkill= low givenage= youngare independent. This is callednditional independence

The definition is:A = a; andB = b, areconditionally independergivenC' = ¢y if
P(A=a;, B="bj|C =c;) =P(A=a|C=cp) x P(B=0bj|C=cp)

This definition can be used wheneve(C' = c;,) > 0.

3 Inference on a Joint Probability Distribution

3.1 Whatis a joint probability distribution?

Suppose we have two random variablesather and pollen whose sets of legal values afeloudy sunny and
{low, mediumhigh} respectively. Then we can show all the possible joint prdiials by a table with 6 rows. For
example:

weather| pollen | Prob
cloudy low 0.5
cloudy | medium| 0.01
cloudy high 0.01
sunny low 0.2
sunny | medium| 0.19
sunny high 0.09

Each row in this table represents a different state of thédamrd so they are all mutually exclusive. The probabilities
in the table must sum to 1.

3.2  Where do joint probability distributions come from?
1. Elicit them from human experts.
2. Compute them from simpler probabilities, e.g. using trepct rule.
3. Learn them from data. If you have a large dataset, then gnestimate the probabilities:

number of records that match row
total number of records

P(row) =

The following joint probability distribution, for examplevas learned from a U.S. census database:

sex | hoursworked | wealth | Prob
female 40.5— poor | 0.25
female 40.5— rich | 0.03
female 40.5+ poor | 0.04
female 40.5+ rich | 0.01
male 40.5— poor | 0.33
male 40.5— rich | 0.1
male 40.5+ poor | 0.13
meale 40.4+ rich | 0.11

3.3 Inference using the joint probability distribution
You can obtain any other probability from the joint distrilon. To find P(E) for some expressiof, you sum the
probabilities in the rows that matdh.

For example P(sex = male wealth = poor) = 0.33 + 0.13 = 0.46. Similarly, P(wealth = poor) = 0.75 (by
summing the 4 rows in whiciealth= poor). And, having compute#(sex= male wealth= poor) andP(wealth=
poor), we can plug these probabilities into the definition of céiodial probability to computé(sex= malgwealth=
poor):

P(sex= malgwealth= poor) = 0.46/0.75 = 0.61

Class Exercise ComputeP (wealth= poorisex= male).

3.4 Classification using the joint probability distribution

At last! It's time to return to the task of classification.

Let the attributes of the instances He, ..., A,,. The new instance, which is to be classified, will be descripea
set of attribute-value pair§A; = aq, As = ao, ..., A, = a,}. Let the set of class labels e

We can use the joint probability distribution to classifyeaninstance as follows:

1. For each class label € L, use the joint probability distribution to compute the citiethal probability for that
class given the description of the new instance:

P(ClaSS: CllAl = [L17A2 =asz,... ,A” = an)

(To emphasise: you are computing this for eatke L, so the number of calculations you perfornjig, the
number of class labels.)

2. Return the class label with the highest probability.

For example, suppose we wish to classify a person whoseipisemattributes arg'sex= male hoursworked =
40.5+}. Does this person belong to theoror rich class?

1.

P(wealth= poorjsex= male hoursworked= 40.5+) =

P(wealth= poor, sex= male hoursworked= 40.5+)

P(sex= male hoursworked= 40.5+)
0.13
0.13+0.11
= 0.54



P(wealth= rich, sex= male hoursworked= 40.5+)
P(sex= male hoursworked= 40.5+)
0.11

0.13+0.11
= 0.46

P(wealth= rich|sex= male hoursworked= 40.5+)

2. Return the class with the highest conditional probapilit this case, the person is predicted topoer.

Note that you did not really need to compute the divisor {he.expression below the line)! For each class label whose
conditional probability you compute, the divisor will bestiame. So only the dividend (above the line) determines
which class wins.

3.5 The bad news

This approach to inference in general and classificatioraitiqular does not scale well. In realistic problems there
will be many more variables, and some will have many moreesluThe table will be too big. No human could
estimate all the probabilities. Equally, no dataset withpde enough data to reliably estimate the probabilitieseda
on frequency in the dataset.



