
Agents with Memories

1 Adding a memory of previous percepts: motivation

At this point, we put aside multi-agent systems and return toour consideration of environments in which there is only
one agent. But, we now move away from reactive agents and begin to consider agents that are more intelligent. Most
important will be to start to consider agents that ‘plan ahead’. But, before we do that, we’ll make a smaller change:
we’ll give our agent a memory of previous percepts.

The need for memory may seem obvious. The more complicated the task, the more likely it is that the agent needs
memory in order to accomplish the task. But we’ll try to arguethis more precisely.

Class exercise. Why is it helpful to remember previous percepts at all?

Before we look at memory proper, let’s make one more observation. Agents can sometimes avoid using an (internal)
memory: the world can act as their memory. When they need to ‘store’ something, they might be able to carry out an
action on the world whose effects can later be sensed when they need to ‘recall’ what they ‘stored’.

Class exercise. Here are two tasks that seem to require memory. But both can besolved by agents with no memory.
In each case, how could you build a purely reactive agent thatcould solve the task?

1. In the left-hand diagram, an agent must randomly traversean object-strewn world until it finds some treasure.
Then, it must pick up the treasure and retrace its steps back to its starting point.

2. In the right-hand diagram, an agent must travel down a corridor. Halfway down the corridor, a light might (or
might not) be flashed at the agent. Later, when the agent reaches the T-junction, it must turn left if, earlier, the
light had been flashed; it must turn right if, earlier, the light had not been flashed.

$

Using the world as your ‘memory’ can be cumbersome. An agent might be reluctant to modify the world, just for the
sake of ‘storing’ information; when the time comes for ‘recall’, the part of the environment where the information is
‘stored’ might not be immediately reachable by the agent’s sensors; and, if there are other agents in the world, they
can corrupt the information that an agent has ‘stored’ in theworld. These problems do not arise (or arise to a lesser
extent) with ‘internal’ memory.

2 Belief states

If the environment is only partially observable, then the agent knows only a certain amount about the actual state of
the world. One way to think about this is that, from the agent’s point-of-view, its current percepts are consistent with a
setof states of the world. We call such a set of states abelief state. A belief state represents the agent’s current belief
about which actual states it might currently be in.

1

Suppose we are programming a game and we are implementing an AI agent, visually depiected as a robot. Suppose
our agent knows that, in this game, there is an alien and a tree. Finally, suppose this is the current state of the world
(with our agent’s visual field highlighted in grey):

R = Robot; A = Alien; T = Tree
R

T

A

Our agent can use its vision sensors to detect the position ofthe alien:position(alien) = 〈2, 1〉. But, because the
environment is only partially observable, our agent does not know where the tree is. The agent’s belief state (the set
of all world states that are consistent with the agent’s current percepts) is:

{ {position(alien) = 〈2, 1〉, position(tree) = 〈0, 5〉},
{position(alien) = 〈2, 1〉, position(tree) = 〈1, 5〉},
{position(alien) = 〈2, 1〉, position(tree) = 〈2, 5〉}, . . . }

Class exercise. What can you say about the belief states of an agent whose environment is fully observable?

One way to reduce the number of states in a belief state is to use a memory. Memorised percepts may fill in some of the
gaps left by the current percepts: the number of states that are consistent with the current percepts and the memorised
percepts is likely to be smaller than the number of states that are consistent with the current percepts alone.

In the example above, if our agent had previously seen that the tree was in position〈4, 5〉, then the belief state is
reduced to:

{{position(alien) = 〈2, 1〉, position(tree) = 〈4, 5〉}}

Of course, there is a risk in a dynamic environment that the memorised percepts become out-of-date. In the example
above, if the tree is a magic tree that can move, then it is not safe to assume that the tree is still in position〈4, 5〉,
where we saw it earlier. But, if we know things about the speedand ease with which magic trees can move, we can
make predictions about where the magic tree now might be: ourbelief state would contain states consistent with our
current percepts and predictions based on the current and memorised percepts. We’ll discuss this issue further in the
next lecture.

3 Adding a memory of previous percepts

So we now want to consider agents that have a different actionfunction from those that we have been considering. In
our reactive agents, the action function maps

• from s (the immediate sensory inputs)

• to a (the actions the agent can perform).

Now, we’re considering agents whose action function maps

• from s (the immediate sensory inputs)andm (what’s in its memory)andai (the agent’s previous action)

• to a (the actions the agent can perform).

2



There are many ways of organising such an agent. The diagram shows one of these, in the case of an agent whose
action function is implemented using a production system:

Perceptual
preprocessor

Propositions about

T
F
T
T
F

the environment, p

Action, aiProduction
System

Sensory
inputs, s

The inputs to the perceptual preprocessor are the agent’s sensory inputs,s, the previous vector of truth-values,p, and
the action the agent has just executed. In pseudocode, the agent does the following at each point in time:

s := SENSE();
p := PREPROCESS(s,p, action);
conflictSet:= FINDALL MATCHES(p, rules);
rule := CHOOSEARULE(conflictSet);
action := the action part ofrule;
EXECUTE(action);

As usual, the conflict resolution strategy we will adopt is the one that chooses thefirst matching rule.

3.1 Example A

Consider the softbot that walks anticlockwise around the walls of grid-based rooms. We know it only needs three
touch sensors:

These three sensors are sufficient for the task in hand. So, ifit has these three sensors, then we will say that the
environment isfully observable.

However, here we are going to deprive it of one of the sensors,leaving it with just two:

These two are not sufficient. This agent now operates in apartially observableenvironment. (Think about its belief
states.) But, with a memory, the agent can still successfully walk anticlockwise around the walls of the room!

The agent will use three propositions, which we will refer toasp0, p2 andp3 for consistency with previous lectures,
and we will assume each is initially F. The perceptual preprocessor will set the truth-values of these propositions as
follows:

3

• p0 will be T iff sensors0 (the one at the agent’s front) returns 1;

• p2 will be T iff sensors2 (the one at the agent’s right-hand side) returns 1;

• p3 will be T iff propositionp2 was T in the previous step.

One possible production system is:

if ¬p2 ∧ p3 then Turn(RIGHT, 2)
if p0 then Turn(LEFT, 2)
if ¬p0 then Move

3.2 Example B

You might recall that, even if we equip this agent with all 8 touch sensors, if the agent operates purely reactively, there
are rooms it cannot successfully circumnavigate. In particular, if there are ‘tight’ dead-end corridors (only one cell
wide), it cannot reliably walk the walls of the room:

but not with this.Our agent can cope with this...

The reason is that there are two states of this world that lookidentical to the agent but which require different actions.

Let’s see how we might solve this using a memory. One solutionis to use a propositionq which will be set to T on
the agent’s first visit to the mouth of a tight dead-end corridor, and set to F on the agent’s second visit, when it has
returned to the mouth of the tight dead-end corridor. The agent will turn right whenq is T, and move forward whenq
is F.

Here is what the perceptual preprocessor would do:

• p0 will be T iff sensors0 (the one at the agent’s front) returns 1;

• p1 will be T iff sensors1 (the one at the agent’s front right) returns 1;

• p2 will be T iff sensors2 (the one at the agent’s right-hand side) returns 1;

• p3 will be T iff sensors3 (the one at the agent’s back right) returns 1;

• q will be set to T iff the previous action was aMove action.

Here are the condition-action rules:

if q ∧ ¬p2 ∧ p3 then Turn(RIGHT, 2)
if ¬q ∧ p1 ∧ ¬p2 then Move
if p0 then Turn(LEFT, 2)
if ¬p0 then Move

Rule ordering is critical here.

Note that this even works if there are corridors that lead offother corridors.

4


