
Ant Algorithms

1 Introduction

Ant algorithms find solutions and near-solutions to intractable optimisation problems. They have been applied to many
optimisation problems including: travelling salespersonproblems, quadratic assignment problems, job scheduling,
vehicle routing and network routing, showing highly competitive performance.

Ant algorithms are inspired by the behaviour of real ants. InNature, forager ants communicate indirectly by depositing
and sensingpheromone trails. This sets up a positive feedback loop that reinforces promising paths: the more ants that
choose a path, the more pheromone that gets deposited on thatpath, increasing the probability that further ants will
choose the path.

In ant algorithms, artificial ants complete a series of walksof a graph, each path through the graph corresponding to
a potential solution to the optimisation problem in hand. Pheromone is deposited on a path in a quantity proportional
to the quality of the solution represented by that path. The ants resolve choices between competing destinations
probabilistically, where the probabilities are proportional to the amount of pheromone associated with each option.

2 The Travelling Salesperson Problem

In Computer Science, we often want to find shortest paths in graphs. The vertices and edges of the graph might
represent towns and roads, railway stations and tracks, airports and flight paths, components on a circuit board and
wires, computers and telecommunications links, etc.

Here we focus on a classic problem of this kind, theTravelling Salesperson Problem (TSP). In the TSP, we are given
a graphG = 〈V, E〉, whereV is the set of vertices andE is the set of (undirected, i.e. bidirectional) edges. Thereis
a cost (e.g. distance) associated with each edge. For the edge between verticesvi andvj , we will write dist(vi, vj)
for this cost. We will assume that the graph iscomplete, which here means that there is an edge between every pair of
vertices. In real problems, this may not be the case, e.g. there might not be a direct road between every pair of towns.
To model this situation, our complete graph can contain an edge, even where there is no road, but the cost of the edge
will be ∞.

The problem is to find a minimum cost path through the graph that starts at some vertex, visits every other vertex
exactly once, and then returns to the starting vertex.

The obvious algorithm for solving TSPs is: generate each path; calculate the length of each path; and then choose the
cheapest. This, however, is not a practical algorithm. Forn vertices, there are(n−1)/2 paths, a quantity which grows
exponentially.

If you know in advance that the minimum cost path will definitely cost less than some valueθ, then a more efficient
algorithm is possible. In this algorithm, you calculate thepath’s cost-so-far while generating the path. If at any point
the cost-so-far of the path you are generating exceedsθ, you abandon it. Once this is done, of the paths that were not
abandoned, you choose the cheapest. This approach has been able to solve quite large TSPs. But to be successful, you
must be able to guess a value forθ which is neither too low (otherwise you’ll abandon all paths, including the cheapest)
nor too high (otherwise you’ll not abandon enough paths and the algorithm will remain impractical). Guessingθ is
not always easy!

Instead,stochastic methods, which work probabilistically are often used. Ant algorithms fall into this category.
Stochastic methods do not guarantee to find the optimal solution to a problem. Optimality is sacrificed for efficiency:
stochastic methods often findgood solutions in reasonable time.

1

3 Ant Algorithms for TSPs

3.1 Basic ant algorithm for TSPs

Here, in pseudocode, is a basic ant algorithm for solving a TSP:

INITIALISE PHEROMONE();
bestOfRun := null;
do
{ bestOfIteration := null;

for each anta
{ path := WALK (a);

if bestOfIteration = null ∨ cost(path) < cost(bestOfIteration)
{ bestOfIteration := path;
}

}
UPDATEPHEROMONE(bestOfIteration);
if bestOfRun = null ∨ cost(bestOfIteration) < cost(bestOfRun)
{ bestOfRun := bestOfIteration;
}

}
until termination condition is met;
return bestOfRun;

Initially, an amount of pheromone is deposited onto the graph (see Section 3.2). Then, in each iteration, anta constructs
a path by walking the graph. (see Section 3.3). When an iteration is completed (i.e. all ants have walked the graph),
the pheromone on the graph is updated (see Section 3.5).

The algorithm iterates until some termination condition ismet, e.g. until a predetermined number of iterations, a
maximum amount of time or an acceptable path cost is reached.Throughout, the algorithm keeps track of the best
path in the current iteration and the best path found overall.

3.2 Initialising the pheromone

Consider an edge between verticesvi andvj . Let the amount of pheromone that is associated with that edge be denoted
by τ〈vi,vj〉.

At the start of the algorithm, all edges are initialised to the maximum pheromone,τmax. This makes all edges quite
attractive in early iterations, keeping exploration high in these iterations.

Algorithm: INITIALISE PHEROMONE()

for each edge〈vi, vj〉 ∈ E
{ τ〈vi,vj〉 := τmax;
}

2



3.3 Walking the graph

Algorithm: WALK (a)

tabu := { };
path := 〈 〉;
initVtx := a vertex fromV , chosen randomly;
insertinitVtx into tabu;
addinitVtx into path;
currVtx := initVtx;
while (V \ tabu) 6= { }
{ currVtx := CHOOSENXTVTX(currVtx, V \ tabu);

insertcurrVtx into tabu;
addcurrVtx to end ofpath;

}
addinitVtx to end ofpath;
return path;

The ant is placed on a randomly chosen initial vertex. As it moves from vertex to vertex, the newly-visited vertices
are added onto its path and also into a tabu set. The idea of thetabu set is to prevent the ant from visiting a vertex
more than once. Hence, an ant chooses its next vertex fromV \ tabu, i.e. vertices other than ones intabu. By the time
V \ tabu is the empty set, then all vertices have been visited, and theant can return to the initial vertex.

The observant reader will realise that these ants are not strictly reactive agents. These ants have memory: the tabu set.
Maybe this lecture should come after the next two lectures, which bring in the idea of memory. On the other hand, it
does seem to follow logically from the lecture on Swarm Intelligence.

3.4 Choosing the next vertex

This part of the algorithm is given the ant’s current vertex;call it vi. And it is given the set of unvisited vertices; call it
UV . The next vertexvj is chosen fromUV probabilistically. It is common for the choice to depend on acombination
of two factors: aheuristic factor and apheromone factor.

The heuristic factorHF should give high scores to vertices which, from the ant’s point-of-view, look most promising,
ignoring the pheromone. In TSPs, we want low cost paths, so the score assigned by the heuristic factor to a vertex
vj ∈ UV should be inversely proportional to its distance from the current vertexvi.

HF (vi, vj) =def
1

dist(vi, vj)

The pheromone factor, on the other hand, gives high scores tovertices which look most promising based on the
pheromone.

PF (vi, vj) =def τ〈vi,vj〉

Since this factor is based on the pheromone deposited on edges of the graph in previous iterations, it represents the
way that ants indirectly communicate with each other between iterations.

The pheromone factor and the heuristic factor are combined to compute the probability that a particular vertex will
be chosen. Parametersα andβ are used to vary the effect of each factor. Given current vertex vi and set of unvisited
verticesUV , the probability thatvj is the next vertex is given by:

P (next = vj) =def
HF (vi, vj)

α × PF (vi, vj)
β

∑
vk∈UV HF (vi, vk)α × PF (vi, vk)β

3

So, in summary, what does procedure CHOOSENEXTVTX() do? It has two parameters: the current vertexvi and the
unvisited verticesUV . For eachvj ∈ UV , it compute a probability as above. Then, based on these probabilities, it
uses roulette wheel selection to choose one of the vertices in UV .

3.5 Updating the pheromone

The algorithm for pheromone update is shown below. This algorithm is called once per iteration of the basic ant
algorithm. The parameter is the best path found in that iteration.

Algorithm: UPDATEPHEROMONE(path)

∆τ := 1/ cost(path);
for each edge〈vi, vj〉 ∈ E
{ τ〈vi,vj〉 := (1 − ρ) × τ〈vi,vj〉;

if vi andvj appear consecutively inpath
{ τ〈vi,vj〉 := τ〈vi,vj〉 + ∆τ ;
}
if τ〈vi,vj〉 < τmin

{ τ〈vi,vj〉 := τmin;
}
if τ〈vi,vj〉 > τmax

{ τ〈vi,vj〉 := τmax;
}

}

As can be seen, an amount of an edge’s existing pheromone evaporates.ρ is the evaporation rate,0 ≤ ρ ≤ 1, and so
(1− ρ) is the proportion that remains. Additionally, edges that occur in the best path found in the current iteration get
rewarded with an amount of extra pheromone. Finally, if everthe amount falls outside the rangeτmin − τmax inclusive,
where0 < τmin < τmax, then the algorithm rounds it towards the nearest end-point.

4 Concluding Remarks

It cannot have escaped your notice that these ant algorithms, while inspired by the behaviour of real ants, are far from
faithful copies of the behaviour of real ants. For example, the artifical pheromone is updated onlyafter the ants have
each walked the graph, notduring the walks. Two other differences are discussed in the next two paragraphs.

Early research into ant algorithms showed that not every antshould get to deposit pheromone. Accordingly, as you
have seen, we use anelitist strategy, where pheromone is deposited based only on the best path found in an iteration.
The reasons for this are clear: on average, it reinforces higher quality paths, while allowing lower quality ones to be
forgotten. If every ant were to deposit pheromone, both goodand bad paths would be reinforced in every iteration,
allowing future ants to be attracted to bad paths. Ultimately, the elitist strategy has a greater chance of converging on
a good solution.

Early research also showed the value of imposing minimum andmaximum pheromone limits. The idea is to try to
avoid stagnation: limiting the differences among paths encourages wider exploration. The upper limit makes it less
likely that one or more high-scoring paths dominate the search. The non-zero lower limit ensures that no path is ever
wholly excluded from being chosen.

4



5 Exercise (Past-exam question)

1. Disc-O-Dog-1 is a circular dog-like agent that is being developed for a computer game. Disc-O-Dog-1 will
inhabit an infinite grid of equal-sized cells, and is shown inwhite in the diagrams below. The only other agent
in the world is the dog’s owner, who is shown in dark grey in thediagrams. Owner and dog must always occupy
different cells.

Disc-O-Dog-1 has two sensors, as follows:

• s0 returns the distance along thex-axis from the owner to the dog. Negative values indicate that the dog is
to the West of its owner; positive values indicate that the dog is to the East of its owner.

• s1 returns the distance along they-axis from the owner to the dog. Negative values indicate that the dog is
to the South of its owner; positive values indicate that the dog is to the North of its owner.

Here are some examples:

s0 = −3; s1 = −1 s0 = 0; s1 = 1 s0 = 1; s1 = 1

Disc-O-Dog-1 has five possible actions:Null, the null action, andMoveN, MoveE, MoveS & MoveW, which
move the dog one cell North, East, South and West respectively. The owner also moves only one cell at a time,
but may move randomly into any one of its 8 surrounding cells.

The owner and the dog will take it in turns to select and execute an action. We want the dog to keep as close to
its owner as possible.

(a) Explain why Disc-O-Dog-1 cannot be implemented as atable-driven agent.

(b) It is decided to implement Disc-O-Dog-1 using aproduction system of condition-action rules. The conflict
resolution strategy will be to choose the first rule in the list of rules that matches.

Define this agent. In other words, say what propositions it will use; explain how the perceptual preproces-
sor will use the sensor values to set the propositions to trueor false; and give the list of condition-action
rules.

For example, you might use a propositionp0 that determines whether the dog is to the left of its owner.
The perceptual preprocessor will setp0 to true iff s0 < 0. Then,p0 can be used in a condition-action rule,
such as the following

if p0 then MoveE

i.e. if the dog is to the left of its owner, then move East. (Of course, something much more sophisticated is
needed.)

Include some paragraphs of explanation (with diagrams if you wish) toconvince someone that your im-
plementation moves the dog so that it keeps as close to its owner as possible.

2. Disc-O-Dog-2 will operate in a continuous world. It has just one sensor, which measures thedistance in mil-
limetres (mm) between itself and its owner. It has one action, theRun action, which can take place at different
speeds, measured in millimetres per second (mmps).

The following four fuzzy sets (two per diagram) have been defined for distances and speeds:

5

0 1 2 5 6

0.25

0.5

0.75

1

truth value

distance (mm)

Near Far

3 4 7 0 10 20 50 60

0.25

0.5

0.75

1

truth value

speed (mmps)

Low

30 40 70

High

(a) On separate diagrams, draw the membership functions of the following:

• High ∪ Low

• Low ′

• (Low ∩ High) ′

(b) The following two fuzzy rules are defined:

if distance is Near then Run atLow speed

if distance is Far then Run at High speed

The sensor tells us that the distance between the dog and its owner is presently 4mm. What, in millimetres
per second, should the speed be?Explain your answer, including diagrams if you wish. Mathematical
exactitude is not necessary: for example, you can guess the centroid, rather than calculating it, provided
you explain what you are doing.

6


