Ant Algorithms

1 Introduction

Ant algorithmsfind solutions and near-solutions to intractable optiniggproblems. They have been applied to many
optimisation problems including: travelling salespergoablems, quadratic assignment problems, job scheduling,
vehicle routing and network routing, showing highly conifpet performance.

Ant algorithms are inspired by the behaviour of real antdNature, forager ants communicate indirectly by depositing
and sensingheromonetrails. This sets up a positive feedback loop that reinfememising paths: the more ants that

choose a path, the more pheromone that gets deposited guathaincreasing the probability that further ants will

choose the path.

In ant algorithms, artificial ants complete a series of walka graph, each path through the graph corresponding to
a potential solution to the optimisation problem in hande®mone is deposited on a path in a quantity proportional
to the quality of the solution represented by that path. Tis eesolve choices between competing destinations
probabilistically, where the probabilities are propomgbto the amount of pheromone associated with each option.

2 TheTravelling Salesper son Problem

In Computer Science, we often want to find shortest paths aphs. The vertices and edges of the graph might
represent towns and roads, railway stations and tracksorésrand flight paths, components on a circuit board and
wires, computers and telecommunications links, etc.

Here we focus on a classic problem of this kind, Thavelling Salesperson Problem (TSP). In the TSP, we are given
agraphG = (V, E)), whereV is the set of vertices anf is the set of (undirected, i.e. bidirectional) edges. There

a cost (e.g. distance) associated with each edge. For trelmdgeen vertices; andv;, we will write dist(v;, v;)

for this cost. We will assume that the grapleasnplete, which here means that there is an edge between every pair of
vertices. In real problems, this may not be the case, e.ge thgght not be a direct road between every pair of towns.
To model this situation, our complete graph can contain @e gelven where there is no road, but the cost of the edge
will be co.

The problem is to find a minimum cost path through the graphgtats at some vertex, visits every other vertex
exactly once, and then returns to the starting vertex.

The obvious algorithm for solving TSPs is: generate each;gaiculate the length of each path; and then choose the
cheapest. This, however, is not a practical algorithm./Feertices, there are: — 1) /2 paths, a quantity which grows
exponentially.

If you know in advance that the minimum cost path will defilyiteost less than some valde then a more efficient
algorithm is possible. In this algorithm, you calculate ffah’s cost-so-far while generating the path. If at any poin
the cost-so-far of the path you are generating excéegsu abandon it. Once this is done, of the paths that were not
abandoned, you choose the cheapest. This approach hasibeensolve quite large TSPs. But to be successful, you
must be able to guess a value flawhich is neither too low (otherwise you'llabandon all pathsluding the cheapest)
nor too high (otherwise you’ll not abandon enough paths &edatgorithm will remain impractical). Guessifgs

not always easy!

Instead,stochastic methods, which work probabilistically are often used. Ant algoriih fall into this category.
Stochastic methods do not guarantee to find the optimalisoltd a problem. Optimality is sacrificed for efficiency:
stochastic methods often firgod solutions in reasonable time.

3 Ant Algorithmsfor TSPs

3.1 Basicant algorithm for TSPs

Here, in pseudocode, is a basic ant algorithm for solving:TS

INITIALISE PHEROMONE();
bestOfRun := null;
do
{ bestOflteration := null;
for each anta
{ path:= wALK (a);
if bestOflteration = null V cost(path) < cost(bestOflteration)
{ bestOfiteration := path;
}
}
UPDATEPHEROMONE bestOflteration);
if bestOfRun = null V cost (bestOflteration) < cost(bestOfRun)
{ bestOfRun := bestOflteration;

}

until termination condition is met
return bestOfRun;

Initially, an amount of pheromone is deposited onto the lgape Section 3.2). Then, in each iteration cactnstructs
a path by walking the graph. (see Section 3.3). When aniver& completed (i.e. all ants have walked the graph),
the pheromone on the graph is updated (see Section 3.5).

The algorithm iterates until some termination conditionrist, e.g. until a predetermined number of iterations, a
maximum amount of time or an acceptable path cost is reachiedhughout, the algorithm keeps track of the best
path in the current iteration and the best path found overall

3.2 Initialising the pheromone

Consider an edge between vertiogandv;. Let the amount of pheromone that is associated with that bdglenoted
DY T4, 0,y

At the start of the algorithm, all edges are initialised te thaximum pheromoney.x. This makes all edges quite
attractive in early iterations, keeping exploration highhese iterations.

Algorithm: INITIALISE PHEROMONE()
for each edge(v;,v;) € E

{ Ttwiwy) = Tmax




3.3 Walking the graph

Algorithm: WALK (a)

tabu:={ };

path := ();

initVtx := a vertex fromV, chosen randomly

insertinitVtx into tabu;

addinitVtx into path;

currVix := initVtx;

while (V' \ tabu) # { }

{ currVtx := CHOOSENXTVTx(currVtx, V \ tabu);
insertcurrVix into tabu;
addcurrVtx to end ofpath;

addinitVtx to end ofpath;
return path;

The ant is placed on a randomly chosen initial vertex. As ivesdrom vertex to vertex, the newly-visited vertices
are added onto its path and also into a tabu set. The idea ¢dltlneset is to prevent the ant from visiting a vertex
more than once. Hence, an ant chooses its next vertexifrgrtabu, i.e. vertices other than onestabu. By the time

V' \ tabu is the empty set, then all vertices have been visited, andrthean return to the initial vertex.

The observant reader will realise that these ants are ncifysteactive agents. These ants have memory: the tabu set.

Maybe this lecture should come after the next two lecturdschvbring in the idea of memory. On the other hand, it
does seem to follow logically from the lecture on Swarm ligehce.

3.4 Choosing the next vertex

This part of the algorithm is given the ant’s current vered| it v;. And it is given the set of unvisited vertices; call it
UV. The next vertex; is chosen fron/V probabilistically. It is common for the choice to depend aroenbination
of two factors: aheuristic factor and apheromone factor.

The heuristic factoff F' should give high scores to vertices which, from the ant'sipof-view, look most promising,
ignoring the pheromone. In TSPs, we want low cost paths, sstbre assigned by the heuristic factor to a vertex
v; € UV should be inversely proportional to its distance from theent vertex;.

HE (i) =def Figtur o)

The pheromone factor, on the other hand, gives high scoresrtes which look most promising based on the
pheromone.

PF(vi,v5) =def T(w.v,)
Since this factor is based on the pheromone deposited ors eddlee graph in previous iterations, it represents the
way that ants indirectly communicate with each other betwtsgations.
The pheromone factor and the heuristic factor are combinedmpute the probability that a particular vertex will

be chosen. Parametersand3 are used to vary the effect of each factor. Given currenexertand set of unvisited
verticesU'V, the probability that; is the next vertex is given by:

-~ HF (v;,v;)® x PF(v;,v;)?
def Zuker HF(”M 7-'lc)'1 X PF(UH 7-’)«)‘3

P(next = v;)

3

So, in summary, what does proceduned®seNEXTVTX() do? It has two parameters: the current verigand the
unvisited verticed/V. For eachv; € UV, it compute a probability as above. Then, based on thesepiiites, it
uses roulette wheel selection to choose one of the vertidé¥i.

3.5 Updating the pheromone

The algorithm for pheromone update is shown below. Thisrétyo is called once per iteration of the basic ant
algorithm. The parameter is the best path found in thattiteta

Algorithm: UPDATEPHEROMONE(path)
A7 := 1/ cost(path);
for each edge(v;,v;) € E
Twiwy) = (1= P) X T, 0,)3
if v; andv; appear consecutively ipath
{ Twiwy) = Twi) +AT;

if T(wi,v;) < Tmin

T(vs,0;) *= Tminj
if Ty, 0;) > Timax
{ T(viy) *= Tmax;

As can be seen, an amount of an edge’s existing pheromonereteg.p is the evaporation raté, < p < 1, and so

(1 — p) is the proportion that remains. Additionally, edges thatuwén the best path found in the current iteration get
rewarded with an amount of extra pheromone. Finally, if ékeramount falls outside the rangg, — 7max incClusive,
where0 < mmin < Tmax, then the algorithm rounds it towards the nearest end-point

4 Concluding Remarks

It cannot have escaped your notice that these ant algorithhike inspired by the behaviour of real ants, are far from
faithful copies of the behaviour of real ants. For examgie,artifical pheromone is updated osliger the ants have
each walked the graph, ndaring the walks. Two other differences are discussed in the nexpvagraphs.

Early research into ant algorithms showed that not everghotld get to deposit pheromone. Accordingly, as you
have seen, we use athtist strategy, where pheromone is deposited based only on the best pattl fioan iteration.
The reasons for this are clear: on average, it reinforcasehiguality paths, while allowing lower quality ones to be
forgotten. If every ant were to deposit pheromone, both goudibad paths would be reinforced in every iteration,
allowing future ants to be attracted to bad paths. Ultinyatbk elitist strategy has a greater chance of converging on
a good solution.

Early research also showed the value of imposing minimumnaaximum pheromone limits. The idea is to try to
avoid stagnation: limiting the differences among pathsenages wider exploration. The upper limit makes it less
likely that one or more high-scoring paths dominate thecdeaFhe non-zero lower limit ensures that no path is ever
wholly excluded from being chosen.



5 Exercise (Past-exam question)

1. Disc-O-Dog-1 is a circular dog-like agent that is beingeleped for a computer game. Disc-O-Dog-1 will
inhabit an infinite grid of equal-sized cells, and is showmtite in the diagrams below. The only other agent
in the world is the dog’s owner, who is shown in dark grey indiregrams. Owner and dog must always occupy
different cells.

Disc-O-Dog-1 has two sensors, as follows:
* s returns the distance along theaxis from the owner to the dog. Negative values indicatettteadog is
to the West of its owner; positive values indicate that the iddo the East of its owner.
« s; returns the distance along theaxis from the owner to the dog. Negative values indicatettiedog is
to the South of its owner; positive values indicate that thg id to the North of its owner.

Here are some examples:

truth value
1

Near Far

0.75
0.5

0.25

6 7
distance (mm

truth vall -
rut vaule Low High

0.75
0.5

0.25

0 10 20 30 40 50 60 70
speed (mmps

(a) On separate diagrams, draw the membership functiomedbtiowing:

¢ HighU Low
e Low’
* (Lown High)’
(b) The following two fuzzy rules are defined:

o

@)
[

so=—3;51 =—1

so=0;81=1

so=1;51=1

Disc-O-Dog-1 has five possible actiorisull, the null action, and/oveN, MoveE, MoveS & MoveW, which
move the dog one cell North, East, South and West respectiVbe owner also moves only one cell at a time,
but may move randomly into any one of its 8 surrounding cells.

The owner and the dog will take it in turns to select and exeantaction. We want the dog to keep as close to
its owner as possible.

(a) Explain why Disc-O-Dog-1 cannot be implemented aslale-driven agent.

(b) Itis decided to implement Disc-O-Dog-1 usingraduction system of condition-action rules. The conflict
resolution strategy will be to choose the first rule in thedisrules that matches.

Define this agent. In other words, say what propositionslitwge; explain how the perceptual preproces-
sor will use the sensor values to set the propositions todrdalse; and give the list of condition-action
rules.
For example, you might use a propositipnthat determines whether the dog is to the left of its owner.
The perceptual preprocessor will ggtto true iff sy < 0. Then,py can be used in a condition-action rule,
such as the following

if po then MoveE

i.e. if the dog is to the left of its owner, then move East. (Bfiise, something much more sophisticated is
needed.)

Include some paragraphs of explanation (with diagramsufwesh) toconvince someone that your im-
plementation moves the dog so that it keeps as close to iterogpossible.

2. Disc-O-Dog-2 will operate in a continuous world. It hastjone sensor, which measures thaance in mil-
limetres (mm) between itself and its owner. It has one action,Rum action, which can take place at different
speeds, measured in millimetres per second (mmps).

The following four fuzzy sets (two per diagram) have beenrafifor distances and speeds:

if distance is Near then Run atLow speed

if distanceis Far then Run atHigh speed

The sensor tells us that the distance between the dog anants @ presently 4mm. What, in millimetres
per second, should the speed bEgplain your answer, including diagrams if you wish. Mathematical
exactitude is not necessary: for example, you can gues<titeod, rather than calculating it, provided

you explain what you are doing.



