Swarm Intelligence

1 Emergent Behaviour

So far, we've looked at environments in which there has begnane reactive agent. Here, we consider what happens
when there are several such agents at large in the world.

Some of the more interesting cases arise when there is arargber of reactive agents in the environment. These
agents will sense the presence of other agents and thisariligletermine their actions. While each agent has only
very simple behaviour, we may see patterns in their collediehaviour. For example, we might observe that, together,
the agents form and move en masse (like a flock of birds, swamsects, school of fish or herd of wildebeest).

Here’s an example of this idea. Suppose each reactive aggavérned by the following behaviour:
Identify two members of your flock that are near to you andargtay close to them, but not too close.

These agents will ‘swarm’. (See demo in lecture/on web)site.

Suppose we allow two types of agent into the environmenaltoand strangers. Locals are additionally governed by
the following behaviour:

When you spot a stranger, go after him; if you are close encattdck.
Strangers are governed by the following behaviour:
If locals chase you, run away.
The locals will swarm, but they will chase and attack strasdge a concerted fashion. (See demo in lecture/on web

site.)

These agents are called Floys, and they provide a simpleggashthe idea. (See the module web site for links to
their originator.)

Boids are a more famous agent that, collectively, exhibidlog behaviour. They are governed by three behaviours.
(Different implementations use different behaviours; dines below are not necessarily the most standard ones, but
they are illustrative of the ideas and they are also the osed in the demo in the lecture, which is linked to from the
module web site).

« Boids try to fly towards the average position of neighboghoids;

« Boids try to keep a small distance away from other objecisl{ding other boids); and

« Boids try to match their velocity with the average velo@fynearby boids.

(See demo in lecture/on web site.)

We'll look at how this kind of thing is implemented. You'll keble to discern the sense/plan/act cycle. These agents
sense the world (typically to find out what other agents arhénvicinity), they decide on an action (typically how
much to move along each axis) and then they act (their pasitithe world is updated).

Here’s some pseudocode. At each moment of time:

for eachboid, b
{ coMPUTENEWPOSITION(b);

}

Suppose each boilis an object whose instance variables include one calledition and one calledelocity.
Both of these variables are vectors (arrays) of length 2Z®simulations) or 3 (for 3D simulations). In the case of
2D simulationsposition = (z,y) andvelocity = (A,, A,) (indicating by how much the andy values should be
changed to compute the boid’s new position).

We're going to have to be able to do computations with ved@mnsys) such as addition/subtraction of two vectors,
multiplication/division of a vector by a ‘scalar’ (a numtbeand comparisons of two vectors. The definitions are very
obvious, but for those of you who need to have them spelledtmiow | show how they are defined in the case of
vectors of length 2:

Vi+ Ve =def

(v1.2 + V2.2, v1.Y + v2.Y)
Vi—V2 =def {

{

{

V1.E — V2.T,V1.Y — U2.Y)
vXn =def (v.xXn,vyxn)

v/n =def (v.r/n,v.y/n)
v<n =def vT<nAvVY<N
abs(v) =gef (abs(v.z),abs(v.y))

A boid’s new position is computed as follows:

Algorithm: CoMPUTENEWPOSITION(b)

Vectorchangesl := BEHAVIOURL(D);

Vectorchanges2 := BEHAVIOUR2(b);

Vectorchanges3 := BEHAVIOUR3(b);

b.velocity := b.velocity + changesl + changes2 + changes3;
b.position := b.position + b.velocity;

In other words, we compute the changes resulting from theetbehaviours, add them to the current velocity to get
the new velocity, and add this to the current position to betrtew position. (Note that extending this algorithm to
more than three behaviours is easy.)

Now for the behaviours.

* Boids try to fly towards the average position of neighbogitivids.



Algorithm: BEHAVIOUR1(D)

VectorsumOfPosnOfOthers;
intn:=0;
for eachboid ¢ in the world
{ ife#bd
{ sumOfPosnOfOthers := sumOfPosnOfOthers + c.position;
n:=n+1;
}

VectoravPosnOfOthers := sumOfPosnOfOthers/n;
Vectorchanges := (avPosnOfOthers — b.position)/100;
return changes;

This computes the average position of the other boids ancesbwidb 1% of the way towards this average
position.

« Boids try to keep a small distance away from other objeatslfding other boids).

Algorithm: BEHAVIOUR2(b)

Vectorchanges;
for eachobjecto in the world
{ ifo#b
{ if abs(b.position — o.position) < 100
{ changes := changes — (b.position — o.position);
}
}
}

return changes;

If other objects are within 100 units away, baiés moved away from them by the same amount again.

< Boids try to match their velocity with the average velo@fynearby boids.

Algorithm: BEHAVIOUR3(b)

VectorsumOfVelOfOthers;
intn:=0;
for eachboid ¢ in the world
{ ife#bd
{ sumOfVelOfOthers := sumOfVelOfOthers + c.velocity;
n:=n+1;
}

VectoravVelOfOthers := sumOfVelOfOthers/n;
Vectorchanges := (avVelOfOthers — b.velocity)/8;
return changes;

This computes the average velocity of the other boids andggboidb’s velocity one eighth of the way
towards this average velocity.

When we observe boids (or real birds) flying as a flock, it isgéng to assume that there is a leader whom the other
boids are following. This might explain how the flock arisbg:following the leader, they all fly in the same direction,
they all turn at the same time, etc. But, of course, thisashow flocks arise. Instead, as we've seen, each boid
is a simple autonomous agent; each boid exhibits some siogtiaviours; and, crucially to the formation of flocks,
some of those behaviours are quite ‘social’ behaviours (eagching your velocity with that of your neighbours). The
formation of the flock is a by-product of the collective beioav of the individual boids.

This is a case where, to use a clichg, ‘the whole is more ti@sum of its parts’. When a ‘higher-level’ behaviour or
property comes about in this way, we describe it asmergent behaviowr emergent property

Let’s look at another example.

2 Simple Communication

This lecture has introduced the idea of having more than geatan the world. And so far, these agents have been
able to sense and react to the presence of other agents. Batiral capability we should consider at this point is
communicatiobetween agents.

We need to be careful here. We need to realise that the kindrofruinication we can get from a reactive agent is
generally a fairly impoverished form of communication.dbtls to be implicit and unintended, and it tends to happen
indirectly through the effects of the agents’ actions inéhgironment.

For example, as it moves around its environment, an agertitraggrete some substance (e.g. a spray of scent or a
trail of slime) that can be sensed and responded to by otlestagin biology, such a substance is cajiedromone

In this way, one agent implicitly, unintentionally and inelttly communicates information about where it has been to
other agents.

Or, as another example, one agent, on sensing the preseswaesignificant object in its environment (e.g. a predator
or a food source) might emit a noise. In this way, the ageratirelgrgely unintentionally, communicates information
to other agents who are able to hear that noise.

In contrast to this impoverished communication betweemtiea agents, agents with greater intelligence may be
capable of more explicit, intentional and direct forms ofrgounication. They may explicitly decide whether to
communicate, to whom to communicate, what they will comroaté, how to communicate and when to communicate.
They deliberate rather than react: they work out, in thesrdse what the likely effects of their communication will be
on their audience, and make their communication decisio@sway that they hope will have desired effects. Since
we are currently looking only at reactive agents, we canrploge this richer form of communication at this point in
the module.

Even impoverished forms of communication can lead to iistéarg emergent behaviour. We'll look at one example of
this. Consider ant-like agents that forage for food. Whey find food, they return to their nest. (They find their nest
again by its smell.) When they're carrying food back to thstnthey secrete quantities of pheromone. Other agents
who are foraging for food, when they detect pheromone, wilbfv the pheromone trail in the direction in which it is

at its strongest. Hence, we have here some implicit, untioteal, indirect communication.

Itlooks a little as though the agents codrdinate theirdarg. It's as if there is centralised control. The colony géats
appears to exploit nearby food sources until the food is esteal, and then it turns its attention to more distance food
sources. But, of course, this seemingly codrdinated behais an illusion. It is an emergent property of the simple
behaviour of the individual agents interacting (and inclisecommunicating) with each other. (See demo in lecture.)

3 Artificial Life

If biology studies life byanalysinglife that is to be found on Earth, thefrtificial Life or ALife studies life by
synthesisingt (creating it). Interestingly, this may help us to undarst not only life-as-we-know-it, but also life-as-



it-could-be. Itis a broad, multi-disciplinary field, dravg many ideas from Computer Science and Al, as well as from
biology, chemistry, physics, economics, etc.

The systems we've looked at in this lecture are all examfl@d.de. It is perhaps true to say that ALife is very much
concerned with emergent behaviour as this seems to be a donfeature of natural life. (ALife is also very much
concerned with evolution and learning.)

ALife research can help us to understand properties of &k € systems, quite apart from those involving animals
such as birds and ants. For example, its techniques can Beawstidy the formation of traffic jams, or the formation
of ‘corridors’ of pedestrians in crowded high streets, @ tiperation of stock markets.

It has also had industrial applications. For example, alatrgofood foraging has inspired algorithms for optimisatio
problems, such as finding the shortest paths between alsrindenetwork, which can be applied to real tasks such
as telecom routing. (See next lecture.) More sexy exampéeade found in the entertainment business. The bats in
Batman Returnand the wildebeest stampedétlire Lion King for example, were animations based on the behaviours
of boids.

4 The Mind as a Society

So, what are the relationships between Al and ALife? Thezesaveral.

Firstly, ALife has borrowed techniques from Al: neural natsl GAs, for example. This gives us an overlap in the
things we research and use.

Secondly, Al has an interest in systems where there are nganta (Al people uses phrases such as ‘distributed
Al' and multi-agent systems’ when referring to this work. pé\ALife is also interested in such systems. If there is
a difference here, it is that Abndsto be more interested in the case where the agents withirygters have rich,
complex behaviours, whereas ALifendsto be more interested in the case where the agents have $ietpiours.

The third relationship is the most thought-provoking. lsleaming from ALife might help to explain human intelli-
gence. Some people believe that our intelligence (or ptigsenf our intelligence, such as our supposed conscious-
ness) are emergent properties, arising from the colletreaviour of interacting low-level (simple, unintelliggn
agencies. This is sometimes summed up as a sldbarsociety of mind

If this is right, it might even be a challenge to the way thatr@$earch is carried out. Some would argue that Al

research is too top-down and is focused too much on atteroptsdctly model complex behaviours. They argue

that the right methodology is more bottom-up with a focusiorpte components, emergence, evolution and learning.
(However, in my opinion, modern Al is more bottom-up thanviéewas anyway. The structure of this module reflects
this.)



