Production Systems

The table in a table-driven agent implements the agentisraétinction. But this way of implementing an action
function is far from concise. There is an entry in the tableefeery possible percept (and, in the cas€efearning,

an entry for every percept-action pair). The wall-follogysoftbot, for example, has eight touch sensors, each ieturn
only 0 or 1, and hence 256 entries in its table. With more ssnsmd sensors that can return more values than just
0 or 1, this quickly becomes impractical (the table becornedarge) or even infeasible (the table is infinite). For
example, a light sensor or a thermometer returns a real vahless we both restrict the range of values and discretise
them, so that the light sensor or thermometer can returnamdyof a finite set of values (and preferably one sfrall

set), we cannot build a table-driven agent that has thesmeenn this lecture, we are not going to deal directly with
the problem of real-valued percepts. But we are going to seayaof building agents which implement their action
functions in a way that is more concise than using a table. ¢%éirue to focus on reactive agents.

1 Building Reactive Agents using Production Systems

One way of building such an agent is to useraduction system

Such an agent has a vector of sensory inputs (si, ..., s,). It applies some preprocessing to these to produce a
vectorp = (p1,...,Di,.-..,pm) Of propositions. For the moment, we will assume that eacis either T (true) or

F (false). Eaclp; represents some simple proposition about the environragntthat there is an obstacle directly in
front of the agent; that the agent is in a corner; that the tatpre is greater that2°C'; that the amount of light
entering a light meter exceeds a threshold value; etc. Iifjirtae agent has a vector of actions that it can choose to

executea = (ay,...,a;).
The agent then needs a way of implementing its action funcfldis is where we use the production system. It will
choose which action to execute on the basis of vastor

Propositions about
the environment, p

Sensory Perceptual Production

inputs, s ~| preprocessor

Action, ai

ERRLEERE

A production system comprises a listaindition-action rulesElsewhere, condition-action rules might be referred to
as: production rules, productions, situation-actionsustimulus-response rules or just rules. (We will explaioty
that these are not the same kind of rules that we saw in rideebelassifiers, or in rule-based reasoning in general.)

Each condition-action rule is of the form
if cthena;

wherec is aconditionanda; is one of the agent’s possible actions. The conditions velBoolean-functions of the
propositions inp, e.g. using conjunction\), disjunction {/), negation), etc.

The agent will execute the action of one of the rules whoselition evaluates to T (true). Of course, in general,
several rules will have true conditions. We refer to thesthasonflict set We will need aconflict resolution strategy
to pick one of these rules.

In pseudocode, the agent does the following at each poiirhizt t

s := SENSK);

p := PREPROCES®);

conflictSet= FINDALL MATCHES(p, rules);
rule := CHOOSEARULE(conflictSe,
action:= the action part ofule;
EXECUTE(action);

There are many possible conflict resolution strategie$dieg:

» Choose thdirst rule that matches.
* Assign priorities to the rules. Choose the rule from theflictrset that hasighest priority

» Choose thenost specificule. Assuming rule conditions are conjunctions of propss, this is the rule in the
conflict set that has the longest condition.

» Choose a rule that has not been used before or the one tha¢dasisedeast recently

We will only consider production systems where the confésbiution strategy is to execute the action offttst rule
whose condition is true. The pseudocode from above canfdreriee simplified:

s := SENSK);

p := PREPROCES®);

rule := FINDFIRSTMATCH(p, rules);
action:= the action part ofule;
EXECUTE(action);

2 Examples of Production System

2.1 Example A

By way of a simple example, consider a robot who lives in a raemwhich there is a moving light source. The
robot has two light sensors on its front: a left sensor andjlat sSensor. Each of these can return a real number to
signify the amount of light being received. The robot is dapaf three actionsMbve (move one pace forward),
Turn(RI GHT, 1) (turn45° to the right) andfur n(LEFT, 1) (turn45° to the left).

So, vectors is of length two: s, says how much light the left sensor is receiving;says how much light the right
sensor is receiving.

Vectorp is also of length twop, will be T iff sg > s1; p1 will be Tiiff s; > s¢. (If po andp, are both F, then the two
sensors must be receiving the same amount of light.)

The production system is:
if po then Tur n(LEFT, 1)
if py thenTur n(RI GHT, 1)
if =po A —p1 then Move

Class Exercise:What will be the behaviour of this robot?

2.2 Example B

Consider the softbot that walks anticlockwise around thiésved grid-based rooms. It has 8 sensors mounted around
its body; we will use 8 propositiongy, . . ., p7, wherep; will be T iff s; returns 1 (is touching an object). One possible
production system is:

if =pa A p3 then Tur n(RI GHT, 2)

if po then Tur n(LEFT, 2)

if —po then Move

Note how the ordering of the rules is important. Note also haveh more concise this is than the original table-driven
agent.

Class ExerciseThis agent is unable to handle ‘tight dead-end corridors! a dead-end path between two walls that
is less than two cells wide, e.g.:

Our agent can cope with this... but not with this.

Indeed, no purely reactive agent can handle these. Why not?

3 Default Actions in Production Systems

Suppose you have a production system whose conflict resolstiategy is to always choose the first-matching rule.
When devising the rules for your production system, it isveamiional for the last rule to have as its condition simply
true (the proposition that is always T):

if truethen agefaurt

So if no other rule (higher in the list) is used, this rule Woiél used as a last resort. The action in this radgsur will
be some suitable default action to be executed when notlsegsesuitable. This may prevent your agent from being
paralysed by inaction.

This simple change works well for Example B above: the thiré could be rewritten & truethen Move.

Class Exercise:Consider Example A from above.

1. Under what circumstances did this agent ‘freeze’?

2. How would you rewrite the rules so that the agent can gelf ibsit of these difficulties?

4 Agents with Goals

At the moment, the example agents that we have designedaftfeedriven agents and the production system agents)
are always ‘on the go’. At every moment of time, they sensen pind act. Suppose instead you want your agent to
achieve some goal and then stop.

Class Exercise:How would you write your production system to achieve this?

5 Comparison with Propositional Definite Clauses

Recall that propositional definite clauses can be eithgugsitional symbols on their own (called facts), e.g.

p

or a conditional whose antecedent is a conjunction of pridipaal symbols and whose consequent is a single propo-
sitional symbol (called rules), e.g.
(P1Ap2 A Apn) =q

Condition-action rules and definite clauses are utterly diferent beasts. What are the differences?

» We restricted the antecedent of definite clauses to a cotiqumof propositional symbols: no negation, no
disjunction, etc. Lifting this restriction would have fezaching effects on the forwards- and backwards-chaining
inference engines. We have placed no such restriction ofif tparts of condition-action rules.

» The biggest difference: In condition-action rules, tieett’ part of the rule is aactionto be executed; in definite
clauses, the ‘then’ part (the consequent) is a statemeirigke propositional symbol). Numerous things follow
from this:

— Propositional definite clauses make statements and are krerecor false; condition-action rules are com-
mands and hence not true or false.

— Propositional definite clauses ‘chain’ together: the cqnsat of one may be in the antecedent of another.
Condition-action rules do not chain together: the ‘thertd one condition-action rule can’t appear in
the ‘if’ part of another.

Or are they so different? Suppose we are writing a production system, comprising itionéaction rules, but our
agent has amssert action, which stores whatever is asserted into some ardaeaddent’'s memory. Here’s an
example:

if sucklegshen Assert (manmal)

if hairythen Assert (manmmal)

if mammal\ chewsCudhen Asser t (ungul at e)

if ungulater longNeckthen Assert (gi r af f e)

Now the differences have been eroded.

A richer repertoire of actions also means that we are notwgedfio implementing reactive agents. If the agent has an
Assert action, for example, then it can remember its percepts aeadhesn in future decisions. It is also possible
for it to simulate actions in its head (i.e. to think ahead)dded, highly sophisticated agents have been built using
production systems where the agent is equipped with acsiocis a#Assert andRet r act .

6 Genetic Algorithms for Production Systems

It's possible to learn a production system, taking an apgraamilar toQ-Learning. We won't look at the details.
Instead, we’ll consider evolving the production system.

Suppose we haver propositionspy, . . ., p,, andl actionsay, . . ., a;. Each condition-action rule can be represented
by a bit string comprising bits to represent the rule’s condition afidg, {] bits to represent the rule’s action. For
example, if we have 8 propositionsi(= 8), we need 8 bits for the rule’s condition. And if we have 4 @et then we
need 2 bits for the rule’s action. As before, each of the agpnssible actions is assigned a unique bit string, e.g.:

Action | Bit string
Move 00
Turn(RIGHT, 2) |01
Turn(RIGHT, 4) | 10
Turn(LEFT, 2) |11

Now consider the following rule:
if po then Tur n(LEFT, 2)

The condition of this rule can be represented as the follgwiih string 1#######000. In these bit strings, we use 0
(false) and 1 (true), as you'd expect, but we also allow # poesent Don’t Care (so they're not really bit strings). So
the string 1####### says thatmust be true and we don’t care about the other propositioiven@hatTur n(LEFT,

2) is encoded by 11 (above), the rule as a whole is represented as

VAt ##A1L

The rule
if p; thenTurn(RI GHT, 2)

is similarly represented by

H#1H A ##01

The rule
if =po A —p1 then Move

is represented by

004474400
Class Exercise What would be the bit string representation of the followintg?

if ps A pa A —po A pr then Move

In the previous sections of these notes, we have alloweditbg' conditions to use any Boolean operators in any com-
bination. But the bit string representation we have devidgal/e is not as expressive. Mathematically speaking, this
representation allows only rule conditions that areanjunctive normal formi.e. they comprise proposition symbols
or the negation of proposition symbols conjoined (ANDedjetier. It does not allow, for example, disjunction in rule
conditions. But, as we have seen before, simple cases ahdtpn can be had through multiple rules. For example,
the rule:

if po V p1 thenMove

can be equivalently represented by two rules:
if po then Move

if p; then Move

Having described how to encode individual rules, we must devide how to encode the whole production system.
Quite simply, the production system as a whole is encodedhgatenating the bit strings for each rule.

This raises an issue. Different production systems will beoded by different length bit strings. For example, a
production system with 3 rules will have a bit string of lem@0 (because in our example each rule is encoded by a
bit string of length 10); but a production system with 4 rulg have a bit string of length 40. Either crossover and
mutation must be carefully defined so that they gracefullydhadifferent-length parents; alternatively, we coulddp
out’ all strings so that they are all of the same length.

The great advantage of bit strings is they give easy impleatien of genetic operators. However, our very efficient
implementations, using logical operations and masks, @amnark on strings that allow # as well as 0 and 1. Either
we must abandon those fast implementations, or we must firayahavoiding use of #.

Class Exercise Give an encoding that avoids #.

