
Production Systems

The table in a table-driven agent implements the agent’s action function. But this way of implementing an action
function is far from concise. There is an entry in the table for every possible percept (and, in the case ofQ-Learning,
an entry for every percept-action pair). The wall-following softbot, for example, has eight touch sensors, each returning
only 0 or 1, and hence 256 entries in its table. With more sensors, and sensors that can return more values than just
0 or 1, this quickly becomes impractical (the table becomes too large) or even infeasible (the table is infinite). For
example, a light sensor or a thermometer returns a real value; unless we both restrict the range of values and discretise
them, so that the light sensor or thermometer can return onlyone of a finite set of values (and preferably one of asmall
set), we cannot build a table-driven agent that has these sensors. In this lecture, we are not going to deal directly with
the problem of real-valued percepts. But we are going to see away of building agents which implement their action
functions in a way that is more concise than using a table. We continue to focus on reactive agents.

1 Building Reactive Agents using Production Systems

One way of building such an agent is to use aproduction system.

Such an agent has a vector of sensory inputss = 〈s1, . . . , sn〉. It applies some preprocessing to these to produce a
vectorp = 〈p1, . . . , pi, . . . , pm〉 of propositions. For the moment, we will assume that eachpi is either T (true) or
F (false). Eachpi represents some simple proposition about the environment,e.g. that there is an obstacle directly in
front of the agent; that the agent is in a corner; that the temperature is greater than22oC; that the amount of light
entering a light meter exceeds a threshold value; etc. Finally, the agent has a vector of actions that it can choose to
execute,a = 〈a1, . . . , al〉.

The agent then needs a way of implementing its action function. This is where we use the production system. It will
choose which action to execute on the basis of vectorp.

Sensory Perceptual
preprocessor

Propositions about

T
F
T
T
Finputs, s

the environment, p

Action, aiProduction
System

A production system comprises a list ofcondition-action rules. Elsewhere, condition-action rules might be referred to
as: production rules, productions, situation-action rules, stimulus-response rules or just rules. (We will explain below
that these are not the same kind of rules that we saw in rule-based classifiers, or in rule-based reasoning in general.)

Each condition-action rule is of the form
if c then ai

wherec is aconditionandai is one of the agent’s possible actions. The conditions will be Boolean-functions of the
propositions inp, e.g. using conjunction (∧), disjunction (∨), negation (¬), etc.

1

The agent will execute the action of one of the rules whose condition evaluates to T (true). Of course, in general,
several rules will have true conditions. We refer to these astheconflict set. We will need aconflict resolution strategy
to pick one of these rules.

In pseudocode, the agent does the following at each point in time:

s := SENSE();
p := PREPROCESS(s);
conflictSet:= FINDALL MATCHES(p, rules);
rule := CHOOSEARULE(conflictSet);
action := the action part ofrule;
EXECUTE(action);

There are many possible conflict resolution strategies, including:

• Choose thefirst rule that matches.

• Assign priorities to the rules. Choose the rule from the conflict set that hashighest priority.

• Choose themost specificrule. Assuming rule conditions are conjunctions of propositions, this is the rule in the
conflict set that has the longest condition.

• Choose a rule that has not been used before or the one that hasbeen usedleast recently.

We will only consider production systems where the conflict resolution strategy is to execute the action of thefirst rule
whose condition is true. The pseudocode from above can therefore be simplified:

s := SENSE();
p := PREPROCESS(s);
rule := FINDFIRSTMATCH(p, rules);
action := the action part ofrule;
EXECUTE(action);

2 Examples of Production System

2.1 Example A

By way of a simple example, consider a robot who lives in a roomin which there is a moving light source. The
robot has two light sensors on its front: a left sensor and a right sensor. Each of these can return a real number to
signify the amount of light being received. The robot is capable of three actions:Move (move one pace forward),
Turn(RIGHT, 1) (turn45o to the right) andTurn(LEFT, 1) (turn45o to the left).

So, vectors is of length two:s0 says how much light the left sensor is receiving;s1 says how much light the right
sensor is receiving.

Vectorp is also of length two.p0 will be T iff s0 > s1; p1 will be T iff s1 > s0. (If p0 andp1 are both F, then the two
sensors must be receiving the same amount of light.)

2



The production system is:
if p0 then Turn(LEFT, 1)
if p1 then Turn(RIGHT, 1)
if ¬p0 ∧ ¬p1 then Move

Class Exercise:What will be the behaviour of this robot?

2.2 Example B

Consider the softbot that walks anticlockwise around the walls of grid-based rooms. It has 8 sensors mounted around
its body; we will use 8 propositions,p0, . . . , p7, wherepi will be T iff si returns 1 (is touching an object). One possible
production system is:

if ¬p2 ∧ p3 then Turn(RIGHT, 2)
if p0 then Turn(LEFT, 2)
if ¬p0 then Move

Note how the ordering of the rules is important. Note also howmuch more concise this is than the original table-driven
agent.

Class Exercise.This agent is unable to handle ‘tight dead-end corridors’, i.e. a dead-end path between two walls that
is less than two cells wide, e.g.:

but not with this.Our agent can cope with this...

Indeed, no purely reactive agent can handle these. Why not?

3 Default Actions in Production Systems

Suppose you have a production system whose conflict resolution strategy is to always choose the first-matching rule.
When devising the rules for your production system, it is conventional for the last rule to have as its condition simply
true (the proposition that is always T):

if truethen adefault

So if no other rule (higher in the list) is used, this rule willbe used as a last resort. The action in this rule,adefault, will
be some suitable default action to be executed when nothing else is suitable. This may prevent your agent from being
paralysed by inaction.

This simple change works well for Example B above: the third rule could be rewritten asif truethen Move.

Class Exercise:Consider Example A from above.

1. Under what circumstances did this agent ‘freeze’?

2. How would you rewrite the rules so that the agent can get itself out of these difficulties?

3

4 Agents with Goals

At the moment, the example agents that we have designed (the table-driven agents and the production system agents)
are always ‘on the go’. At every moment of time, they sense, plan and act. Suppose instead you want your agent to
achieve some goal and then stop.

Class Exercise:How would you write your production system to achieve this?

5 Comparison with Propositional Definite Clauses

Recall that propositional definite clauses can be either propositional symbols on their own (called facts), e.g.

p

or a conditional whose antecedent is a conjunction of propositional symbols and whose consequent is a single propo-
sitional symbol (called rules), e.g.

(p1 ∧ p2 ∧ . . . ∧ pn) ⇒ q

Condition-action rules and definite clauses are utterly different beasts. What are the differences?

• We restricted the antecedent of definite clauses to a conjunction of propositional symbols: no negation, no
disjunction, etc. Lifting this restriction would have far-reaching effects on the forwards- and backwards-chaining
inference engines. We have placed no such restriction on the’if’ parts of condition-action rules.

• The biggest difference: In condition-action rules, the ‘then’ part of the rule is anactionto be executed; in definite
clauses, the ‘then’ part (the consequent) is a statement (a single propositional symbol). Numerous things follow
from this:

– Propositional definite clauses make statements and are hence true or false; condition-action rules are com-
mands and hence not true or false.

– Propositional definite clauses ‘chain’ together: the consequent of one may be in the antecedent of another.
Condition-action rules do not chain together: the ‘then’ part of one condition-action rule can’t appear in
the ‘if’ part of another.

Or are they so different? Suppose we are writing a production system, comprising condition-action rules, but our
agent has anAssert action, which stores whatever is asserted into some area of the agent’s memory. Here’s an
example:

if sucklesthen Assert(mammal)
if hairy then Assert(mammal)
if mammal∧ chewsCudthen Assert(ungulate)
if ungulate∧ longNeckthen Assert(giraffe)
. . .

Now the differences have been eroded.

A richer repertoire of actions also means that we are not confined to implementing reactive agents. If the agent has an
Assert action, for example, then it can remember its percepts and use them in future decisions. It is also possible
for it to simulate actions in its head (i.e. to think ahead). Indeed, highly sophisticated agents have been built using
production systems where the agent is equipped with actionssuch asAssert andRetract.

4



6 Genetic Algorithms for Production Systems

It’s possible to learn a production system, taking an approach similar toQ-Learning. We won’t look at the details.
Instead, we’ll consider evolving the production system.

Suppose we havem propositions,p0, . . . , pm andl actionsa0, . . . , al. Each condition-action rule can be represented
by a bit string comprisingm bits to represent the rule’s condition and⌈log2 l⌉ bits to represent the rule’s action. For
example, if we have 8 propositions (m = 8), we need 8 bits for the rule’s condition. And if we have 4 actions then we
need 2 bits for the rule’s action. As before, each of the agent’s possible actions is assigned a unique bit string, e.g.:

Action Bit string
Move 00
Turn(RIGHT, 2) 01
Turn(RIGHT, 4) 10
Turn(LEFT, 2) 11

Now consider the following rule:
if p0 then Turn(LEFT, 2)

The condition of this rule can be represented as the following bit string 1#######000. In these bit strings, we use 0
(false) and 1 (true), as you’d expect, but we also allow # to represent Don’t Care (so they’re not really bit strings). So
the string 1####### says thatp0 must be true and we don’t care about the other propositions. Given thatTurn(LEFT,
2) is encoded by 11 (above), the rule as a whole is represented as

1#######11

The rule
if p1 then Turn(RIGHT, 2)

is similarly represented by
#1######01

The rule
if ¬p0 ∧ ¬p1 then Move

is represented by
00######00

Class Exercise.What would be the bit string representation of the followingrule?

if p3 ∧ p4 ∧ ¬p0 ∧ p7 then Move

In the previous sections of these notes, we have allowed the rules’ conditions to use any Boolean operators in any com-
bination. But the bit string representation we have devisedabove is not as expressive. Mathematically speaking, this
representation allows only rule conditions that are inconjunctive normal form, i.e. they comprise proposition symbols
or the negation of proposition symbols conjoined (ANDed) together. It does not allow, for example, disjunction in rule
conditions. But, as we have seen before, simple cases of disjunction can be had through multiple rules. For example,
the rule:

if p0 ∨ p1 then Move

can be equivalently represented by two rules:
if p0 then Move

if p1 then Move

5

Having described how to encode individual rules, we must nowdecide how to encode the whole production system.
Quite simply, the production system as a whole is encoded by concatenating the bit strings for each rule.

This raises an issue. Different production systems will be encoded by different length bit strings. For example, a
production system with 3 rules will have a bit string of length 30 (because in our example each rule is encoded by a
bit string of length 10); but a production system with 4 ruleswill have a bit string of length 40. Either crossover and
mutation must be carefully defined so that they gracefully handle different-length parents; alternatively, we could ‘pad
out’ all strings so that they are all of the same length.

The great advantage of bit strings is they give easy implementation of genetic operators. However, our very efficient
implementations, using logical operations and masks, cannot work on strings that allow # as well as 0 and 1. Either
we must abandon those fast implementations, or we must find a way of avoiding use of #.

Class Exercise.Give an encoding that avoids #.

6


