Reinforcement L earning

We're looking at table-driven implementations of reactigents, in which the action function is stored as a big lookup
table. Each entry in the table maps from a percept to therattiat should be taken. And we've considered two ways
of creating this table: human designers can work out all tfiges, or we can use a genetic algorithm to try to evolve
a table of high fitness. In this lecture, we look instead at timagent catearn an action function stored in a table.

We've studied learning previously, when we were lookinglassifiers. But, what we studied before is a differgpe
of learning from what we will study in this lecture. What weidied before is calledupervised learning; what we
will study here isreinforcement learning. What distinguishes them is the nature of the informati@nléarner receives
from the ‘teacher’ or from the environment:

Supervised learning: The learner receives examples of inputs and target outfitits. each example might be an
email and a human-supplied classification (ham or spam)aoh example might be a description of a per-
son’s food and drink consumption along with a classificatiomder- or over-the-limit) based on a breathalyser
reading. Do not, however, assume that supervised learsinged only when we are building a classifier. It is
much broader. It can be used to learn a system that carrieegngssion. Remember, the job of a regression
system is to predict a real number e.g. a system that preditisrrow’s rainfall. In this case, the learner will
receive descriptions of one day’s weather along with theactinfall recorded on the following day. Equally,
we can use supervised learning to learn an agent’s actiatifum Suppose an expert chess player creates a set
of examples, each comprising a board configuration plus éiserhove that can be made in that configuration.
Then, we can use supervised learning to learn an agentduncti

Reinforcement learning: In reinforcement learning, the learner receives only rewgor punishments) after exe-
cuting certain actions and thereby on entering certairstafhe rewards (or punishments) act as positive (or
negative) reinforcementon actions, i.e. they make it moré&egs) likely that the agent will execute those actions
if it finds itself in the same or similar situations in the freuFor example, a character in a game might observe
the effect its actions have on its score or on some measuterhés health; if it is capable of reinforcement
learning, it can use these observations to improve its madtiaction. A complication in many tasks is that
reward isdelayed, giving rise to acredit assignment problem, i.e. it must work out which of its earlier actions
contributed to the reward and by how much to reinforce thear.example, in chess reward comes at the end
of the game (when the agent wins or loses); in waiting on tainl@ restaurant reward comes at the end of the
meal (on receipt or non-receipt of a tip).

In this context, machine learning researchers often djstsh a third type of learning, namelysupervised learning.
We won't be covering unsupervised learning in this module.

Reinforcement learning is a huge subject, with many diffeedgorithms for different settings. But in this lecture we
gain a flavour of the topic by looking at only one such algamth

1 Reward

At each time step, the agent uses its sensors to obtain a pergeptVe will assume that the environment is fully
observable and that completely determines the state that the agent is in. Onadbis Iofs,, the agent chooses and
executes an actiog,. The agent obtains a reward(a real number) based ds;, a;). This reward might come from

a teacher who is observing the agent, or it might come fronettiernal environment, or it might even come from
within the agent itself (e.g. a measure of improved healithemreased hunger). Following execution of the action, the
world will now be in a new state. The agent can sense this e by using it sensors to obtain percept;.

For simplicity, we will assume a deterministic environmehhis means that if on more than one occasion the agent
senses a particular percepand chooses to execute a particular actiptihen the reward and the next percept will be

the same on each occasion. In a non-deterministic envirotymg contrast, after sensirgand executing: on one
occasion the reward might éand the next percept might bebut on another occasion after sensirand executing
a the reward might be” (r' # r””) and the next percept might & (s’ = s”).

The agent tries to maximise the reward it receives in the fong To make this more precise, we need to distinguish
two cases. On the one hand, some agents execute actiontheptibach a particular terminal state or one of a set of
terminal states. When their sensors tell them they havédeeba terminal state, they stop. For example, an agent that
walks a maze stops when it reaches a particular point (eegextt); an agent that plays a board game stops when the
game is over (when it wins, loses or draws). Of course, thetaggn then reinitialise itself and ‘go again’, e.g. walk
the maze again, perhaps from a different starting point;alka different maze; or play another round of the game.

In the other case, the agent is not trying to reach any péatiterminal state. Instead it acts continuously, in pifesi
without limit. An example is an agent whose job is forever @mlkthe walls of a room. A more realistic example is
an agent that monitors a factory process. To keep thingslsjrmpthis lecture we will focus on this second case, i.e.
on agents that act continuously.

In the case of an agent that acts continuously, the cumalegivard that the agent receives over time is calculated as
follows:

ro +yr1 + 'yzrz +...
or, equivalently,

t=00

Z "/t’f't

t=0
You can see that it is the sum of the rewards, but the formwaladtes what is callediscounting. v is thediscount
rate, 0 < v < 1. If we sety = 0, only r is considered. If we set > 0, then the later a reward is received, the less it
counts. As we sef closer to 1, future rewards are taken into account more glyon

The task of the agent is to learn an action function that predthe greatest possible cumulative reward for the agent
over time.

2 Action-Value Functions

We're going to start by adding an extra column and extra ronair table.

In previous lectures, our table had one row per percept.ds@xample, if the agent hastouch-sensors (which return
0 or 1), there ar@™ different percepts and hence aBbrows in its table; each row pairs a percept with the action to
be taken when that percept has been sensed.

But in this lecture, we will pair each percept wighch action. For example, suppose the agent has 2 touch-sensors
(which return 0 or 1) and is capable of three actidvtsye, Tur n(Rl GHT, 2) andTur n(LEFT, 2). Then, the
table will have the following entries:

Percept| Action Q
00 Move

00 Turn(RI GHT, 2)
00 Tur n(LEFT, 2)
01 Move

01 Turn(RI GHT, 2)
01 Tur n(LEFT, 2)
10 Move

10 Turn(RI GHT, 2)
10 Tur n(LEFT, 2)
11 Move

11 Turn(RI GHT, 2)
11 Turn(LEFT, 2)

Class Exercise. Suppose the agent hagouch sensors (which return 1 or 0) anddifferent actions. How many rows
will the table contain?

What is the extra column for? In a given row of the table in \khtlee percept is and the action is, the Q-value,
Q(s,a), will be an estimate of the cumulative reward that the agélitreceive if it chooses actiom on sensing
perceps. Roughly then, it says how good the action is in that situmatio

If the Q-values are ‘correct’, then in situatian the agent should choose the actiofor which Q(s, a) is highest.
Mathematically, this is written
argmax Q(s, a)
a

Class Exercise. Suppose the current perceptjs 01. And suppose that tlig-values are as follows:

Percept| Action Q
01 Move 2
01 Turn(RIGHT, 2) |1
01 Tur n(LEFT, 2) 7

What isarg max, Q(s,a), i.e. what action will the agent choose?

But this assumes that th@-values are ‘correct’. What we have to do now is consider Hmvagent can learn these
values.

3 Q-Learning

We are going to start with randomly-chos@rvalues (or perhaps all zeroes). The agent will improveghedues by
a process of trial-and-error: it will choose and execut@ast and it will use the rewards it receives to update the
Q-values. Over time, we hope that the values will convergaédctorrect’ values.

Here is the basic algorithm. It continuous to assume an dgahacts continuously.

s := SENSK);
do forever
{ rand:= arandomly-generated number between 0 and 1
ifrand < e
{ Choose actiom randomly
}
else
{ a:=argmaxQ(s,a);
}
EXECUTE(a);
r := SENSEREWARD();
s’ := SENSK);
Q(s,a) :==r +ymaxQ(s',a’);

s:=s/;

In essence, the agent repeatedly chooses an action, obt@ward, and updates the values in the table.

Note that the algorithm uses both the following notation:
argmax Q(s, a)
a

which, as we discussed previously, means the action withitiigest()-value fors. But it also uses the following
notation:
max Q(s’,a’)
o

which means the highegl-value fors’ (rather tharthe action with the highesy-value).

3.1 Exploration versus Exploitation

As you can see, sometimes the agent chooses a random actientimes it chooses the action that has the highest
Q@-value. Itis choosing betweemploration andexploitation:

Exploration: The agent chooses an action which, according to its curstimates, may not necessarily be the best
action to take but, by choosing this action, it has the opputy of gaining new experiences and improving its
estimates of th€)-values.

Exploitation: The agent chooses the action which, according to its cuestithates, is the best action to take (the
one with the highegf-value). This gives it the opportunity of gaining reward.

Pure exploration is of no use: it never puts into practicarif@mation it has learned. Pure exploitation is no good: it
leaves the agent stuck in a rut. The agent must strike a baleteveen the two. The algorithm takes a simple view of
how to strike this balance: exploration is chosen with philit ¢; exploitation is chosen with probability— e.

There are more sophisticated ways of striking this balar®. example, by keeping track of which actions it has
chosen, it can favour actions that it has not tried very oftealso might make sense for the probability of exploration
to decrease over time.

3.2 Updating Q(s, a)
Let’s see whether we can make sense of the way the algoritiiatepthe)-values:
Q(s,a) =71 +ymaxQ(s',a');
o

We see that the new value is the reward the agent has jusveeder its latest action added to an estimate of the
cumulative reward it can receive. Do we know the cumulatixeard? We don’t. But we can use tevalue of the
best action that we might take next. For this we nsex, Q(s’,a’). In other words, we find the actiari that, when
executed in the new situatien, gives the highegp-value, and we use thg-value as our estimate of the cumulative
reward we will receive in the future.

Class Exercise. Suppose the table currently contains the following entries

Percept| Action Q
10 Move 5
10 Turn(RIGHT, 2) |4
10 Turn(LEFT, 2) |1
11 Move 0
11 Turn(RIGHT, 2) | 4
11 Tur n(LEFT, 2) 6

1. Suppose the current percepis 10. Assuming exploitation rather than exploration, viaaction will the agent
choose?

2. Suppose that, after executing the chosen action, thet agegives a reward of 3 and its next percept is 11.
(Assumey is 1.) Update the table accordingly.

Why does this formula for updating the table work? The firsietithe agent consults the table to choose an action for
a given percept, th@-values are arbitrary, and so they are not really giving aegmmngful information on which to
base the decision. However, once an action has been exetheeafent receives information (the reward), which it
uses to update the table, hence improving the informatieragient will obtain the next time it consults the table to
choose an action for that percept.

Over the course of repeated updates,@healues will get better and better. When one estim&jecalue improves,
then the estimate@-values of its immediate predecessors will also imprové time they get updated.

Eventually, the tabulated)-values should converge to give values that perfectly rieste’ the actual cumulative
rewards. In fact, this only happens under certain conditione of which is that every percept-action pair gets tried
infinitely often.

The conditions of convergence are rather stringent. Bugraictice, even when th@-values are not perfectly correct,
the agent may still end up with values that enable it to perfaell in its environment.

4 Concluding Remarks

Reinforcement learning is an extremely promising appro&he of its notable successes is TD-Gammon, which,
after training on 1.5 million backgammon games, came td the performance of expert human players. There's a
lot more that could be said about it. If it interests you, yan ok it up in a book. But here’s a synopsis of some of
the issues:

* In non-deterministic environments, the way we are updaf)pvalues is not guaranteed to converge, even if
all percept-action pairs get tried infinitely often. Thisay in some books you might see a different way of
updating@:

Q(s,0) = Q(s,0) + a(r +7max Q(s, ') — Q(s,0));

or equivalently
Q(s,a) == (1 — 0)Q(s,a) + a(r + ymax Q(s', a’));

This takes a weighted average of the cur@ntalue and the revised estimate. The parametér < o < 1)
weights the parts of this average and should decay over time.

Books will discuss ways of improving convergence (for baerministic and non-deterministic environments).
In essence, these involve updating more than@nelue each time round the loop. But this requires the agent
to remember sequences of actions that it has taken, whiciiresqa memory; hence the agent would not strictly
be a reactive agent.

As our agent tries out actions, it will be able to observe dbhesequences of actions, e.g. if it sensemnd
executes:, the agent obtains a reward ofand its next percept will be’. From this, it can build what is
sometimes called a ‘model’ of the world. Books may discussfoecement learners that learn and use the
‘model’; they may also discuss approaches in which it is meslithat the learner has been given a ‘model’ in
advance. Again these agents might not qualify as being pteattive.

The use of an explicit lookup table, with an entry for evegrgept-action pair, is a major constraint. First,
storage may be a problem: tables may be too large (or, foiraamnis environments, they may be infinite).
Second, no attempt is made to generalise, i.e. no attemtde to infer the)-values of unseen percept-action
pairs from seen percept-action pairs.

Active research is looking at how to represent and learr¢iffanction in some more compact form, in which
generalisations are captured. One of the most succesgitdaghes is to useN N. Only some rows of the
table are stored. Then, when we wai@-aalue, we find thé-nearest neighbours and predict thevalues from
the neighbours. (This is regression, rather than classdity Of course, updates t@-values must be handled
in a cleverer way too.

Books are more likely to discuss training a neural net toestioe@-function. This has, in general, met with less
success than thieV N approach.

Books might discuss research that addresses concernsstiatability and convergence properties. Hierarchi-
cally organised tasks are, for example, an active area eéreB.

