
Genetic Algorithms

Let’s remind ourselves of the simple table-driven agent that we designed for walking anticlockwise around the walls
of grid-based rooms. The agent has eight touch sensors mounted around its body, each of which returns 1 if there’s an
object in the corresponding cell and 0 otherwise. In fact, werealised we need only three of the sensors to be switched
on. But in this lecture we will assume all eight are operative.

We used three actions to implement our agent:Move, which moves the agent one pace forward in the direction thatit
is facing;Turn(RIGHT, 2), which turns the agent90o (2 lots of45o) to the right; andTurn(LEFT, 2), which
turns the agent90o to the left. But in this lecture, we will assume the agent has atotal of four actions:

• Move;

• Turn(RIGHT, 2);

• Turn(RIGHT, 4);

• Turn(LEFT, 2).

We worked hard to design our agent in the previous lecture: ittook ingenuity to realise that only three of the four
sensors and three of the eight actions were needed; and it took ingenuity to fill in the table.

Since all the computation was done by us, the designers, in advance, we agreed we could not really regard the agent
as being autonomous.

In this lecture, we are going to consider an alternative way of obtaining the agent’s table. We are going to look at
genetic algorithms(GAs). We will evolveagents with good tables. We stress from the outset that evolving tables for
table-driven agents is only one use of GAs. There are lots of other applications, some of which are mentioned at the
end of these notes.

1 Evolution by Natural Selection

The theory of evolution by natural selection can be formulated in many ways, but the following encapsulates its
essential elements:

• Successive generations can differ from previous ones. Children inherit characteristics of their parents. But
combining and mutating these characteristics introduces variation from generation to generation.

• Less fit individuals are selectively eliminated (‘survival of the fittest’).

Thus it is possible for individuals in successive generations to perform better than those in previous ones.

Programs that emulate this process are referred to asGenetic Algorithms (GAs). You might also encounter the phrase
Evolutionary Algorithms, but this phrase is sometimes used in a broader way.

2 GAs

GAs iteratively update apopulationof individuals. On each iteration, the individuals are evaluated using afitness
function. A new generation of the population is obtained by probabilistically selecting fitter individuals from the

1

current generation. Some of these individuals are admittedto the next generation unchanged. Others are subjected to
genetic operatorssuch as crossover and mutation to create new offspring.

Here’s a sketch of a typical GA in pseudocode:

Algorithm: GA(n, χ, µ)

// Initialise generation 0:
k := 0;
Pk := a population ofn randomly-generated individuals;
// Evaluate Pk:
Computefitness(i) for eachi ∈ Pk;
do
{ // Create generation k + 1:

// 1. Copy:
Select(1 − χ) × n members ofPk and insert intoPk+1;
// 2. Crossover:
Selectχ × n members ofPk; pair them up; produce offspring; insert the offspring intoPk+1;
// 3. Mutate:
Selectµ × n members ofPk+1; invert a randomly-selected bit in each;
// Evaluate Pk+1:
Computefitness(i) for eachi ∈ Pk;
// Increment:
k := k + 1;

}
while fitness of fittest individual inPk is not high enough;
return the fittest individual fromPk;

n is the number of individuals in the population;χ is the fraction of the population to be replaced by crossoverin
each iteration; andµ is the mutation rate.

We’ll look at the parts of this in more detail and exemplify them by considering how to evolve a table-driven agent for
wall-following.

3 Representation of individuals

Individuals in the population are often represented bybit strings. Then, crossover and mutation are easy to implement
and efficient. But it does imply that we need to implement waysof encodingan individual as a bit string anddecoding
again.

Let’s consider encoding and decoding our table-driven agents from earlier.

We have eight sensors, each returning 0 or 1. This gives us28 = 256 different percepts and so the table for our
table-driven agent will have 256 entries. (In the earlier lecture, when we restricted attention to just three sensors, the
table was only 8 entries.) The percepts are already bit strings, which is handy.

We have four actions. With two bits, we can assign a unique bitpattern to each action. For example:

Action Bit string
Move 00
Turn(RIGHT, 2) 01
Turn(RIGHT, 4) 10
Turn(LEFT, 2) 11

2



So imagine these are the first few entries in an agent’s table:

Percept Action
00000000 Move
00000001 Turn(LEFT, 2)
00000010 Turn(RIGHT, 4)
...

...

We can concatenate all the entries to form one long bit string:

percept
︷ ︸︸ ︷

00000000

M
o
v
e

︷︸︸︷

00

percept
︷ ︸︸ ︷

00000001

T
u
r
n
(
L
E
F
T
,
2
)

︷︸︸︷

11

percept
︷ ︸︸ ︷

00000010

T
u
r
n
(
R
I
G
H
T
,
4
)

︷︸︸︷

10 . . .

Class Exercise How long will the bit string be?

In fact, if you think about it, we don’t need to include the percepts in the bit string:

M
o
v
e

︷︸︸︷

00

T
u
r
n
(
L
E
F
T
,
2
)

︷︸︸︷

11

T
u
r
n
(
R
I
G
H
T
,
4
)

︷︸︸︷

10 . . .

We know that the first two bits are the action the agent will execute when the percept is 00000000; the next two are
the action for percept 00000001; the next two are for 00000010; and so on.

Class Exercise How long will the bit string be? How many different bit strings are there?

With this representation, it is easy for us to encode one of our table-driven agents as a bit string and just as easy to
decode a bit string to recreate a table-driven agent.

4 Fitness

The GA must be equipped with afitness function, enabling it to score and rank the individuals. This will be task-
specific: the fitness function used to evolve a wall-following agent will be different from one used to evolve a
timetabling agent, for example.

The fitness function evaluates the individual (usually in its decoded state, not when it is a bit string) on some task.
Typically, averageperformance on a number of randomly-generated tasks is used.

In the case of our wall-following agent, the obvious way to measure fitness is to place it into the room at some random
position and then count the proportion of grid cells that lienext to the walls that it manages to visit. (This is relatively

3

inexact, since it doesn’t penalise the agent for visiting cells that do not lie next to the walls, neither does it insist on
an anticlockwise circuit, but it is adequate for our simple example.) We can stop the agent after a fixed time, and
repeat the task several times, restarting the agent in a different random position each time. The fitness score is then the
average performance.

5 Copy

If χ is the fraction of the next generation that will be created bycrossover, then(1−χ) is the fraction that will be copied
intact from this generation to the next. In total then,(1−χ)×n individuals will be copied over. The question is: how
will the GA selectwhich individuals to copy? Obviously, this is influenced by their fitness. You might think we just
rank them by fitness and copy the top(1 − χ) × n individuals, but you’d be wrong. Selection works probabilistically.
Various options have been proposed.

5.1 Roulette wheel selection

In roulette wheel selection, the probability that individual i is selected,P (choice= i), is computed as follows:

P (choice= i) =def
fitness(i)

Σn
j=1fitness(j)

Think of a roulette wheel in which the segments are of possibly different sizes, based on each individual’s relative
fitness.

In case you can’t see how this is implemented, here’s some pseudocode:

Algorithm: ROULETTEWHEELSELECTION()

r := random number, where0 ≤ r < 1;
sum:= 0;
for each individual i
{ sum:= sum+ P (choice= i);

if r < sum
{ return i;
}

}

5.2 Rank selection

In rank selection, the individuals are sorted by fitness. Theprobability that individuali is selected is then inversely
proportional to its position in this sorted list, i.e. the individual at the head of the list is more likely to be selected than
the next individual, and so on through the sorted list.

5.3 Tournament selection

Tournament selection is best explained with a concrete example. Suppose you want to pick 20 individuals from 100.
Randomly choose (with uniform probability) a small number of individuals (typically fewer than 10) from the 100
(with replacement). Keep the fittest one. Do this again and again until you have got your 20.

Tournament selection, while slower and more complicated, can create more diverse populations (see later).

4



6 Crossover

In crossover, portions of two parents from the current generation are combined to create two offspring: a random
subpart of the father’s bit string is swapped with a random subpart of the mother’s bit string.

We needχ × n individuals, who will form χ×n

2
pairs of parents. How will these individuals be selected? Answer:

in the same way as we selected individuals for copying, i.e. by roulette wheel selection, rank selection or tournament
selection.

How will offspring be created from parents? Various optionshave been proposed. They are summarised in this
diagram.1

Parents Offspring
Single-point crossover: 11101001000 11101010101

ց ր
−→

ր ց
00001010101 00001001000

Two-point crossover: 11101001000 00101000101
ց ր

−→
ր ց

00001010101 11001011000

Uniform crossover: 11101001000 10001000100
ց ր

−→
ր ց

00001010101 01101011001

In single-point crossover, a random position in the bit string is selected at which swapping occurs; in two-point
crossover, two positions are selected and segments are swapped; in uniform crossover, individual bits are chosen at
random for swapping.

The offspring may or may not be fitter than their parents. But the hope is that roulette wheel selection or rank selection
or tournament selection will have supplied reasonably fit parents, and the offspring might have some fitness advantage
if they incorporate parts of these fit parents.

Crossover can be implemented extremely efficiently. We willillustrate this for single-point crossover, using the same
example as given above.

1. Choose crossover point: Suppose your bit strings are of lengthn. Randomly generate a number between 1 and
n − 1 inclusive. Call itp.

In the example above, the bit strings were length 11. Supposewe generatep = 5.

2. Create masks: mask1 will be the binary representation of2n − 2p; mask2 will be the binary representation of
2p − 1.

In the example, mask1 will be 211 − 25 = 2016, which in binary is 11111100000; mask2 will be 25 − 1 = 31,
which in binary is 11111, and if we pad it out to get 11 bits it becomes 00000011111.

1The diagram is based on one in T.M. Mitchell:Machine Learning, McGraw-Hill, 1997.

5

3. Create offspring1: offspring1 := (parent1 AND mask1) OR (parent2 AND mask2).

For the example:

parent1 11101001000 parent2 00001010101
mask1 11111100000 mask2 00000011111
AND 11101000000 AND 00000010101

OR = 11101010101

4. Create offspring2: offspring2 := (parent1 AND mask2) OR (parent2 AND mask1).

For the example:

parent1 11101001000 parent2 00001010101
mask2 00000011111 mask1 11111100000
AND 00000001000 AND 00001000000

OR = 00001001000

7 Mutate

At this point the new generation of the population is complete: (1 − χ) × n individuals have been copied across, and
χ × n individuals have been produced by a crossover operator. Nowa certain proportionµ of thenewgeneration are
chosen at random. This selection is done with uniform probability: it is not based on fitness. In each of the chosen
individuals a bit is chosen at random and this bit is inverted(flipped to the other value):

Mutation: 11101001000 −→ 11101011000

Mutation too has an efficient implementation using bit operations.

1. Choose mutation point: Suppose your bit strings are of lengthn. Randomly generate a number between 0 and
n − 1 inclusive. Call itp.

In the example above, suppose we generatep = 4.

2. Create a mask: The mask will be the binary representation of 2p.

In the example, the mask will be24 = 16, which in binary (padded to 11 bits is) 00000010000.

3. Invert: the new individual := individual XOR mask.

For the example:

individual 11101001000
mask 00000010000
XOR 11101011000

Mutation is a more random process than crossover and is used sparingly (i.e.µ will have a low value). But it is worth
including because it might help to produce an essential feature that is missing in the current generation.

6



8 Discussion

Crowding. GAs can be very successful at evolving fit individuals. However, a form of stagnation can occur when
there iscrowding. Crowding occurs when some individual that is fitter than others gets to reproduce a lot, so that
copies of this individual and minor variants of this individual take over a large part of the population. This reduces the
diversity of the population, making it hard for progress to be made.

There are numerous ways of reducing crowding:

• Mutation is, of course, one way of increasing diversity.

• Rank selection and tournament selection tend to be better than roulette wheel selection at maintaining diversity.

• More sophisticated is fitness sharing, whereby an individual’s fitness is reduced if the population already con-
tains similar individuals.

• More sophisticated also is to try to encourage the formation of niches within the population (which you can
think of as clusters or subspecies), e.g. by restricting crossover so that it is only applied to similar individuals.

Parameters. You can see that to run a GA, you will need to decide on the values of several parameters. The obvious
ones are:n, χ andµ. But you also need: a parameter to terminate the algorithm (e.g. a desired fitness level or a
maximum number of generations or a maximum time); if fitness if averaged over several tasks, you will have to decide
how many tasks; and if tournament selection is used, you willhave to decide the size of each tournament. Finding
values for these parameters may require experimentation. In general, large numbers are needed to get enough diversity
in the populations; but large numbers bring very high computational costs.

Illegal bit strings. Suppose our agent only had 3 actions. We’d still need to use 2 bits so that each action would
have a unique bit string associated with it. But one pattern of bits would go unused. There is a risk that this pattern
will be created by the crossover or mutation operators. How do we handle this? One option is to reject the individual
immediately and run crossover or mutation again until a legal individual is produced. Another option is to allow the
individual to enter the new population but to assign it zero fitness.

Applications. GAs have been used throughout AI to evolve all sorts of individuals: digital circuits, factory schedules,
university timetables, neural network architectures/topologies, distance measures forkNN , etc., etc. In the case of
timetabling, for example, it is easy to imagine how different timetables can be encoded as bit strings and how fitness
can be measured by counting violated constraints and preferences.

7


