Genetic Algorithms

Let's remind ourselves of the simple table-driven agent weadesigned for walking anticlockwise around the walls
of grid-based rooms. The agent has eight touch sensors swardund its body, each of which returns 1 if there’s an
object in the corresponding cell and 0 otherwise. In factreadised we need only three of the sensors to be switched
on. But in this lecture we will assume all eight are operative

We used three actions to implement our agébitve, which moves the agent one pace forward in the directionithat
is facing; Tur n(Rl GHT, 2), which turns the aget0° (2 lots 0f45°) to the right; andlfur n(LEFT, 2), which
turns the agerfi0° to the left. But in this lecture, we will assume the agent hastal of four actions:

* Move;

e Turn(RIGHT, 2);

e Turn(RI GHT, 4);

e Turn(LEFT, 2).
We worked hard to design our agent in the previous lecturtnok ingenuity to realise that only three of the four
sensors and three of the eight actions were needed; andiirtgenuity to fill in the table.

Since all the computation was done by us, the designersvianee, we agreed we could not really regard the agent
as being autonomous.

In this lecture, we are going to consider an alternative wlaghtaining the agent’s table. We are going to look at
genetic algorithmgGAs). We will evolveagents with good tables. We stress from the outset thatiexplables for
table-driven agents is only one use of GAs. There are lotsharapplications, some of which are mentioned at the
end of these notes.

1 Evolution by Natural Selection

The theory of evolution by natural selection can be formadain many ways, but the following encapsulates its
essential elements:

« Successive generations can differ from previous onesld@i inherit characteristics of their parents. But
combining and mutating these characteristics introduagation from generation to generation.

« Less fitindividuals are selectively eliminated (‘surdigéthe fittest’).

Thus it is possible for individuals in successive genergtim perform better than those in previous ones.

Programs that emulate this process are referred @ea®tic Algorithms (GAs)You might also encounter the phrase
Evolutionary Algorithmsbut this phrase is sometimes used in a broader way.

2 GAs

GAs iteratively update @opulationof individuals On each iteration, the individuals are evaluated usifignass
function A new generation of the population is obtained by probstidally selecting fitter individuals from the

current generation. Some of these individuals are adntittéide next generation unchanged. Others are subjected to
genetic operatorsuch as crossover and mutation to create new offspring.

Here’'s a sketch of a typical GA in pseudocode:

Algorithm: GA(n, x, 1)

/I Initialise generation 0:
k:=0;
Py, := a population of: randomly-generated individuals
/I Evaluate Py:
Computefitnessi) for eachi € Py;
do
{ [/l Creategeneration k + 1:
/I 1. Copy:
Select(1 — x) x n members of?, and insert intaP; ;.1 ;
/1 2. Crossover:
Selecty x n members of; pair them up; produce offspring; insert the offspring ifg, 1 ;
/3. Mutate:
Select x n members ofP; 1; invert a randomly-selected bit in each
/I Evaluate Py q:
Computefitnesgi) for eachi € P;
/I ncrement:
k:=k+1;

whilefitness of fittest individual irP; is not high enough
return the fittest individual fromP;

n is the number of individuals in the populatiog; is the fraction of the population to be replaced by crossaver
each iteration; ang is the mutation rate.

We'll look at the parts of this in more detail and exemplifgth by considering how to evolve a table-driven agent for
wall-following.

3 Representation of individuals

Individuals in the population are often representedbivgtrings Then, crossover and mutation are easy to implement
and efficient. But it does imply that we need to implement wafysncodingan individual as a bit string ardecoding
again.

Let's consider encoding and decoding our table-driven esgfeom earlier.

We have eight sensors, each returning 0 or 1. This gives’us 256 different percepts and so the table for our
table-driven agent will have 256 entries. (In the earlietuee, when we restricted attention to just three sensloes, t
table was only 8 entries.) The percepts are already bitgstriwhich is handy.

We have four actions. With two bits, we can assign a uniqupdtiern to each action. For example:

Action | Bit string
Move 00
Turn(RIGHT, 2) |01
Turn(RIGHT, 4) | 10
Turn(LEFT, 2) |11

So imagine these are the first few entries in an agent’s table:

Percept | Action
00000000| Move
00000001| Tur n(LEFT, 2)
00000010 Tur n(Rl GHT, 4)

We can concatenate all the entries to form one long bit string

~ <
~
'_— E
[
L =
- o
o = =
3 5 5
percept £ percept 2 percept 2

AN AN AN
00000000 00 00000001 11 00000010 10 ...

Class Exercise How long will the bit string be?

In fact, if you think about it, we don’t need to include the g&pts in the bit string:

:} Turn(LEFT, 2)
;) Turn(RI GHT, 4)

g} Move

We know that the first two bits are the action the agent willoexe when the percept is 00000000; the next two are
the action for percept 00000001, the next two are for 000008dd so on.

Class Exercise How long will the bit string be? How many different bit striegre there?

With this representation, it is easy for us to encode one otahie-driven agents as a bit string and just as easy to
decode a bit string to recreate a table-driven agent.

4 Fitness

The GA must be equipped withféness functionenabling it to score and rank the individuals. This will lask-
specific: the fitness function used to evolve a wall-follogviagent will be different from one used to evolve a
timetabling agent, for example.

The fitness function evaluates the individual (usually sndecoded state, not when it is a bit string) on some task.
Typically, averageperformance on a number of randomly-generated tasks is used

In the case of our wall-following agent, the obvious way tcasigre fitness is to place it into the room at some random
position and then count the proportion of grid cells thahkt to the walls that it manages to visit. (This is relatvel

inexact, since it doesn’t penalise the agent for visitingsdéat do not lie next to the walls, neither does it insist on
an anticlockwise circuit, but it is adequate for our simptaraple.) We can stop the agent after a fixed time, and
repeat the task several times, restarting the agent inexelift random position each time. The fitness score is then the
average performance.

5 Copy

If x is the fraction of the next generation that will be createdimssover, thefil —) is the fraction that will be copied
intact from this generation to the next. In total théh;- x) x n individuals will be copied over. The question is: how
will the GA selectwhich individuals to copy? Obviously, this is influenced bgit fitness. You might think we just
rank them by fitness and copy the top—) x n individuals, but you'd be wrong. Selection works probatitally.
Various options have been proposed.

5.1 Roulette whed selection

In roulette wheel selection, the probability that individis selected(choice= 7), is computed as follows:

B fitnesgi)

=def m

Think of a roulette wheel in which the segments are of pogdiifferent sizes, based on each individual’s relative
fithess.

P(choice= 1)

In case you can't see how this is implemented, here’s somedpsede:

Algorithm: ROULETTEWHEELSELECTION()

r := random number, whe@< r < 1;
sum:= 0;

for each individuali

{ sum:= sum+ P(choice= i);

if r < sum
{ returni;
}

5.2 Rank selection

In rank selection, the individuals are sorted by fitness. fifobability that individual is selected is then inversely
proportional to its position in this sorted list, i.e. thelividual at the head of the list is more likely to be selecteaht
the next individual, and so on through the sorted list.

5.3 Tournament selection

Tournament selection is best explained with a concrete plarnSuppose you want to pick 20 individuals from 100.
Randomly choose (with uniform probability) a small numbéinalividuals (typically fewer than 10) from the 100
(with replacement). Keep the fittest one. Do this again amdhagntil you have got your 20.

Tournament selection, while slower and more complicatad areate more diverse populations (see later).

6 Crossover

In crossover, portions of two parents from the current gatieam are combined to create two offspring: a random
subpart of the father’s bit string is swapped with a randobpsut of the mother’s bit string.

We needy x n individuals, who will form X3 pairs of parents. How will these individuals be selectedBwer:
in the same way as we selected individuals for copying, yeohblette wheel selection, rank selection or tournament

selection.

How will offspring be created from parents? Various optitrave been proposed. They are summarised in this
diagram!

Parents Offspring
Single-point crossover: 11101001000 11101010101
N\ /
—
00001010101 00001001000
Two-point crossover: 1110100000 00101000101
N\ /
—_
00001010101 11001011000
Uniform crossover: 11101001000 10001000100
N\ /!
—_—
/
00001010101 01101011001

In single-point crossover, a random position in the bitngtris selected at which swapping occurs; in two-point
crossover, two positions are selected and segments arg@ediaip uniform crossover, individual bits are chosen at
random for swapping.

The offspring may or may not be fitter than their parents. Batttope is that roulette wheel selection or rank selection
or tournament selection will have supplied reasonably fiepts, and the offspring might have some fitness advantage
if they incorporate parts of these fit parents.

Crossover can be implemented extremely efficiently. We illdlstrate this for single-point crossover, using the same
example as given above.

1. Choose crossover point: Suppose your bit strings arengtiie:. Randomly generate a number between 1 and
n — 1inclusive. Call itp.

In the example above, the bit strings were length 11. Suppesgenerate = 5.
2. Create masks: maskvill be the binary representation @f — 27; mask will be the binary representation of
2P — 1.

In the example, maskwill be 2! — 2° = 2016, which in binary is 11111100000; maswill be 2° — 1 = 31,
which in binary is 11111, and if we pad it out to get 11 bits itbmes 00000011111.

1The diagram is based on one in T.M. Mitcheédachine LearningMcGraw-Hill, 1997.

3. Create offspring offspring; := (parent AND mask) OR (parent AND mask).
For the example:

parent 11101001000 parent 00001010101
mask 11111100000 mask 00000011111
AND 11101000000 AND 00000010101
OR =11101010101

4. Create offspring offspring, := (parent AND mask) OR (parent AND mask).
For the example:

parent 11101001000 parent 00001010101
mask 00000011111 mask 11111100000
AND 00000001000 AND 00001000000
OR =00001001000

7 Mutate

At this point the new generation of the population is congalét — x) x n individuals have been copied across, and
x x n individuals have been produced by a crossover operator. aNcevtain proportion of the newgeneration are
chosen at random. This selection is done with uniform praibgbit is not based on fitness. In each of the chosen
individuals a bit is chosen at random and this bit is inve(tipped to the other value):

Mutation: 1110100000 — 1110101000
Mutation too has an efficient implementation using bit ofierss.

1. Choose mutation point: Suppose your bit strings are a@jtten. Randomly generate a number between 0 and
n — 1inclusive. Call itp.

In the example above, suppose we generates.
2. Create a mask: The mask will be the binary representafigh.o

In the example, the mask will & = 16, which in binary (padded to 11 bits is) 00000010000.

3. Invert: the new individual := individual XOR mask.
For the example:
individual 11101001000

mask 00000010000
XOR 11101011000

Mutation is a more random process than crossover and is pseithgly (i.e.x will have a low value). But it is worth
including because it might help to produce an essentialifedhat is missing in the current generation.

8 Discussion

Crowding. GAs can be very successful at evolving fit individuals. Hoarea form of stagnation can occur when
there iscrowding Crowding occurs when some individual that is fitter thaneeghgets to reproduce a lot, so that
copies of this individual and minor variants of this indiva take over a large part of the population. This reduces the
diversity of the population, making it hard for progress eorbade.

There are numerous ways of reducing crowding:

« Mutation is, of course, one way of increasing diversity.
« Rank selection and tournament selection tend to be baterrbulette wheel selection at maintaining diversity.

« More sophisticated is fitness sharing, whereby an indafidditness is reduced if the population already con-
tains similar individuals.

« More sophisticated also is to try to encourage the formagibniches within the population (which you can
think of as clusters or subspecies), e.g. by restrictingsmeer so that it is only applied to similar individuals.

Parameters. You can see that to run a GA, you will need to decide on the eadfiseveral parameters. The obvious
ones are:n, xy andu. But you also need: a parameter to terminate the algorithgy éedesired fitness level or a
maximum number of generations or a maximum time); if fitnéaseraged over several tasks, you will have to decide
how many tasks; and if tournament selection is used, youhaie to decide the size of each tournament. Finding
values for these parameters may require experimentatigerieral, large numbers are needed to get enough diversity
in the populations; but large numbers bring very high corafiomal costs.

Illegal bit strings. Suppose our agent only had 3 actions. We'd still need to usées2b that each action would
have a unique bit string associated with it. But one pattétite would go unused. There is a risk that this pattern
will be created by the crossover or mutation operators. Howve handle this? One option is to reject the individual
immediately and run crossover or mutation again until allegtividual is produced. Another option is to allow the
individual to enter the new population but to assign it zetreess.

Applications. GAs have been used throughout Al to evolve all sorts of imtligis: digital circuits, factory schedules,
university timetables, neural network architecturesitogies, distance measures faN N, etc., etc. In the case of
timetabling, for example, it is easy to imagine how diffdrémetables can be encoded as bit strings and how fitness
can be measured by counting violated constraints and prefes.

