Agents

1 Sense, Plan, Act

The word ‘agent’ is heavily used in Al and Computer Scienceadays. Here we attempt to explain what the word

means in Al.

“An agentis anything that can be viewed asrceivingits environmenthroughsensorand actingupon
that environment througeffectors’

Sensors

7/ 7/
effectors

Robots areembodiedagentssituatedin physical environments, e.g. planetary rovers, warebpast pickers.

Softbots aresoftware agents situateid virtual environments such as the Internet, a game enmisom, a software

simulation or just taking input from the keyboard and digpig output on the screen, e.g. WWW bargain hunt-
ing agents, diary management agents, theorem-provergahednsultancy systems, careers advisory systems.

At some level of abstraction, agents execusense/plan/act cycle

« SenseUse sensors to find things out about the environment (incfuthe effects of previous actions).
« Plan: Decide on the next action(s).

« Act: Use effectors to carry out the chosen action(s).

In Al, our focus is thePlan phase.

The task of the Plan phase is to implemengation functiorthat maps

« from percept sequencéthe sequence of things the agent has perceived so far)

« to the actions the agent can perform (to give the next a@)pn

2 Intelligent Agents

Itis really thePlan phase that determines whether we havengglligent agent

« Rationality: For each percept sequence, a rational agent chooses thretheti it expects will maximize success.

» Autonomy:Three kinds of computation contribute to the definition obgent function:

1. Some of the computation about what action to do when is tpitiee agent’s designers or other controlling
agents;
2. some of the computation is done by the agent itself onpeoéihe latest percept; and

3. some of the computation is done by the agent when it modHesiefinition of its action function, i.e.
when it learns from experience.

The more an agent relies on the first of these, we say thakis lactonomy.

3 Different Types of Environmentsand Agents

3.1 Environments

Here we draw some distinctions about different types ofremvents. Note, however, in some cases the distinctions
need to be drawn from the perspective of a particular agefferBnt agents in the same environment might categorise
the environment differently.

* Fully observablevs. partially observable

Fully observable: The agent's sensors give it access to the complete state efthironment at each point in
time or, at least, to all aspects of the state of the enviranithat are relevant to the agent’s decisions.

Partially observable: Not all aspects of the state of the environment are avaitabtbe agent. Perhaps the
sensors are noisy or inaccurate; perhaps they are limitednige or direction. In particular, an agent
cannot sense now what happened in the past; if this is relévatecision making, then the agent needs
some form of memory. In particular also, an agent cannot iregs sense what is going on in another
agent’s head; if this is relevant to decision making, sommfof inference is needed.

« Deterministic vs. stochastic

Deterministic: The next state of the environment is completely determinethé current state and the action
executed by the agent.

Stochastic: The next state is not completely determined. Obviously the state isn’t completely determined
when you roll a dice, when you test whether a door is lockedodr or when you carry out any action
that you might bungle! Note from these examples that, evéreifvorld is deterministic but only partially
observable, then it magppearto be stochastic to the agent, and this poses much the sanfalgétulties
in agent design.

* Single-step vs. sequential

Single-step: In a single-step environment, the agent senses its envennamd then chooses and performs an
action. Crucially, subsequent sense-plan-act cyclendependent of previous ones: the choice of action
depends only on the current cycle. Macigssificationtasks are single-step. For example, consider an
agent that has to spot defective parts on an assembly Imdt(looks at each part that passes along the
assembly line and, on the basis of what it senses about thisippelassifies the part adefectiveor not
defectivg. Presumably, the agent bases each decision on the cuaréatgne; the current decision doesn’t
affect whether the next part is defective.

Sequential: The decision taken in the current sense-plan-act cyclelaftéct all future decisions. Navigating
through a maze, playing chess, driving a vehicle, contrglk factory production line, and conducting
a conversation, e.g., with a patient who requires a diagnmsa customer who seeks a product are all
(likely) examples of sequential environments.



« Staticvs. dynamic

Static: While the agent is choosing its action (the ‘plan’ step),gheironment cannot change. Choosing chess
moves (when not done against the clock) is an example.

Dynamic: The environment can change while the agent is ‘thinkingassrkeeps growing; the patient’s con-
dition keeps deteriorating; other soccer players on trehgieep playing; . ..

« Discretevs. continuous

Discrete: An environment may be discrete in space or time, in which vas@bles that describe the environ-
ment take on values of fixed finite precision.

Continuous: Variables which describe the environment can theoregidake on values of any precision. Of
course, all digital equipment represents values with onijefiprecision. This means that, strictly speaking,
for agents built from digital devices, all environments digcrete.

« Single agent vs. multi-agent

Singleagent: There is only one agent, ‘our’ agent.

Multi-agent: There is more than one agent. There are subtleties here hwttier objects should ‘our’ agent
regard as being other agents? Clearly, the chess opporemitiser agent. But is the wind another agent?
What about all other drivers on the road? ‘Our’ agent musttta@other object as an agent if (a) the other
object has some measure of success that is is trying to msirfin) the other object’s behaviour affects
‘our’ agent’s success; and (c) ‘our’ agent’s behaviourefehe other object’s success. Hence, the wind
is not an agent, since it cannot be said to be maximising itsess at anything. We would want to treat
nearby drivers as other agents; we might regard more didtivets as just stochastically behaving objects.
(Note that this definition allows the other agents to be coatpe, competitive or anything in between.)

3.2 Reactive Agentsthrough to Deliberative Agents

Reactive agents: A reactive agent is one that chooses its actions on the ba#is @irrent percept only In other
words, its next action is chosen solely using what its sentat it the world is like now. It doesn’t use any
memory to keep track of earlier percepts, and it does nokthiread. Reactive agents therefore typically have
very simplePlanphases. Despite this, reactive agents can exhibit surglyssophisticated behaviour.

Reactive agentswith internal state: This kind of agent uses memory to keep track of parts of thegpehistory, but
still does not think ahead. Often, the agent will use the gyetrbistory to build and maintain a mentabdelof
the world. Of course, the model needs to be updated to refiegtist the current percept but also to reflect the
effects of ‘our’ agent’s actions, other agents’ actions #redway the world changes independently of all these
agents. A model provides a way to handle partial obsentgbilne model can be consulted for information
about parts of the world that cannot currently be sensed.

Deliberative agents: A deliberative agent thinks ahead. It must keep a mental irafdiee world, and it ‘simulates’
the effects of actions on that mental model. It will often lexp alternative ‘simulations’. It chooses its actions
on the basis of the outcomes of these ‘simulations’: it camosk the actions that best achieve its goals or
that bring greatest utility. It needs a memory and a reagpcapability, hence it®lan phase is much more
complicated.

The above categorisation is not intended to deny that madeligent agents, such as humans, are hybrids that combine
reactive and deliberative capabilities.

In the rest of this module, we will trace a story from reactagents to reactive agents with internal state to delibarati
agents, adding ever more capabilities to our agent as we thowmegh the module.

But, for a little concreteness, let's look now at one way afding a reactive agent.

4 Table-Driven Agents. A Simple I mplementations of Reactive Agents

A table-driven agent does the following at each point in time

percept:= SENSK);
action:= LOOKUP(percepttable);
EXECUTE(action);

4.1 Classexercise

By way of a simple example, consider a softbot who lives inrtual room. The room is rectangular and a grid divides
it into equal-sized squares. Some of the cells contain briakd so the softbot cannot pass through those cells. In
particular, a wall of bricks marks the boundaries of the rodlive will assume the softbot always starts off facing
either North, East, South or West.)

1. Suppose the softbot has eight touch sensors. These feffitirere’s an object in the corresponding cell, and 0
otherwise. For example, in this configuration,

.
)

the sensors return 11000001 (starting from the softbotstand moving clockwise).
How many table entries would there be, i.e. how many diftgrercepts are there?

2. Infact, only three sensors are needed in this exercisey @étect the cells highlighted here:

9

How many table entries would there be?

3. The actions ardbve andTur n. Move moves the agent one pace forward in the direction that itasfa
For Tur n, we supply two arguments. The first argument is eitheFT or RI GHT. The second argument is
an integer that indicates how ma#§° rotations make up the turn. For exampler n( Rl GHT, 2) isaturn
action that turns this agent 90 degrees to the right (e.gwi&s facing North, it is now facing East).

Fill in the table, to define a table-driven agent that wallesulalls of the room in an anticlockwise direction.

Percept| Action
000
001
010
011
100
101
110
111




4.2 Discussion

The softbot we designed above can hardly be called an autmmagent. All the computation was done by us, the
designers, in advance. This is one criticism of the tabieedrapproach. (There may be ways of learning or evolving
the table, and we will return to these issues later in the reodu

The table-driven approach ssibleonly if the number of distinct percepts is finite.

The approach ipracticableonly if the number of distinct percepts is not just finite bistequite small. Otherwise, (a)
the table would require too much space; and (b) for us, thigdess, to fill in the entries would be too time-consuming
(or too many experiences would be needed for the agent to tkarentries).

Exercise (Past-Exam Question)

This question is about TLUs and neural networks. Througtremsume that thactivation functiorof the TLUs, g, is
defined as follows:

(@) = 1 ifz>0
9\*) =def\ o otherwise

wheref is the threshold of the TLU.

1. Design a TLU which has two inputs ands». The inputs can take values of 0 or 1. The TLU should compute
s1 | s2, where| is the NOR operator, i.es; | s2 = —(s1 V s2).

2. Your answer to part 1 is to be converted into a TLU that h&seshold of O but it has an extra inpyt At what
value will you fix the inputs, and what weight will you use osy's input wire to continue to computg | s2?

3. The kind of conversion that you carried out in part 2 is dulggecursor to training a neural net using a learning
algorithm. Why is it useful?

4. Below we have tabulated eight Boolean-valued functions:

s1 82| s1Wsy s1sy s1Hsy s1Hsy s1®s2 s1082 s1PS2 51689
0 O 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Suppose you intend to design eight TLUs, each having twatépuands,, that can take values of only 0 or 1.

For how many of the eight functions can such TLUs be desigriexfflain your answer convincingly and in
detail. (There is no need to give any actual TLUs.)

5. Here is a fully connected, layered, feedforward neuradork:

What will the output of this network be when the values ofiifgtits,s; ands, are both 1. Show your working.

6. Design a fully connected, layered, feedforward neurboek for the following. There are four inputs, each of
which can take a value of 0 or 1. When any two of the inputs amedXiae other two inputs are 1, the output of
the network is 1. Otherwise the outputis 0.



