Comparison of Classifiers

We've looked at a number of ways of building classifiers idahg naive Bayes; N N, rules and neural networks. We
also considered the proper way to measure their accuratyisltecture, we do two things: first we make some more
remarks about neural networks; second we take a more rouoaledt how to compare different classifiers.

1 Neural Networks

1.1 Speed of learning

The time taken by the learning step for a neural network carebgvariable in practice and, in the worst case, is not
good at all. If there are. examples and,, weights, each epoch takéXn.n,,) time, and, in the worst case, the
number of epochs can be exponentiakirthe number of inputs.

For example, we saw in the previous lecture that a large nuoflepochs were needed to learn exclusive-or. This was
a small network, and we were presenting it with all possilkneples!

There are various techniques to try to speed up learningaictise. One is to use a learning rate that is closer to

1 (but see below). Another technique is to introduce anairen into the weight update rules calledrmmentum
factor. We won't go into details, but in the early epochs, this fatd@lose to zero, and then, in the remaining epochs,
itis setto, e.g., 0.9. This gives the algorithm time to fincbadjgeneral direction (making small changes) in the early
epochs, and then increases the learning speed once ttatatireas been found.

Of course, another idea is to abandon sequential softwanaations and use parallel hardware.

1.2 Convergence

Will the network learn the function that we are training itléarn? Quite apart from how long the process will take,
there is the question of whether we will ever reach a sitmagifazero error (or near zero error).

As previously discussed for TLU learning, if the value chro$er the learning rate is too large, there is a danger
of ‘overshooting’, and even oscillating around, the optinvaights. But there is another danger, which applies to
networks but not to single TLUs. The error surface may Hagal minima These are places where no small change
in the weights makes the error any smaller, but the netwosknloayet reached the global minimum error.

Opinion differs on the significance of this problem; peopisadree about whether it is common enough in real
domains to be a worry. In domains where you do think that it gsablem, there are techniques for overcoming it.
One approach is to allow the learning algorithm to make soreight changes that actually increase the error (see
simulated annealing

1.3 The role of the network architecture

As noted earlier, we want generalisation: accurate claasifins on unseen data. Will we get it?

The network architecture or topology plays a major role hel@v many hidden layers should there be? And in each
of those hidden layers, how many hidden units should thePelle wrong choices can lead to poor generalisation.

If the network is too small, it will not be able to represere fanction that it needs to represent: it won't be able to
draw the distinctions it needs for making good predictioreneon the seen data.

But, if the network is too big, it will have room to simply memige the examples and act like a large look-up table.

To illustrate this a little, | trained a neural network on aadet of 150 plants from the UCI Machine Learning Repos-
itory (whose URL is on the module web site). All of them arees of some kind. There are four attributes (all
numeric-valued): sepal length in cm; sepal width in cm; pletagth in cm; and petal width in cm. There are no
missing values. There are three classes: a plant can bessflckSetosa (class labgl, 0, 0)), Iris Versicolour (class
label (0,1,0)) or Iris Virginica (class labe{0, 0, 1)). In the data, there are 50 examples of each of the threeeslass
The data is not noisy.

| had to decide on a network topology. Obviously, | need 4 inmits (excluding the ‘extra’ threshold unit) and three
output units. My Java implementation of back-prop onlyabmne hidden layer, so, with my software I've no real
choice about how many hidden layers to use! But | still needetcide how many hidden units there will be in that
layer. | decided to try out a number of different cases: ktoeit 5 and 10 (excluding the ‘extra’ one).

Here are graphs of average error (using 5 iterations of tedd®ldout) for different numbers of epochs and different
numbers of hidden units:

Total error: 5 hidden units Total error: 10 hidden units
70 70
60 60
- 80 - 80
50 I 50
z® T z® i
<20 <20
10 bt T ; 10 e
0 0
181 161 241 320 401 481 561 641 721 601 891 9B 183 165 247 329 411 493 575 657 739 €21 903 985
epoch epoch

How might we come up with a good network architecture? Sonupleeclaim to be good at deciding architectures
on the basis of the input and output spaces. But even they faliew their ‘informed’ guesswork by a period of
experimentation with different architectures. The alédive is to seek to do this automatically. One approach is
random generation of architectures — but there are too masgilpilities to make this a good approach. Another
approach is to try to evolve the architecture using a gemdgiarithm (see future lecture). This sounds promising but
it is so computationally expensive that it is rarely feasibMore common is to uselall-climbing approach. Again
we won't cover the details but basically you start with a #ngndom architecture and make it successively smaller
(or bigger) using information-theoretic measures to deeitlich weights (and hence hidden units) to retain.

Now we’ll turn to the broader issue of how to compare classifielhe remaining sections of these notes compare
classifiers on a variety of different criteria.

2 Accuracy

Accuracy is the obvious way to compare classifiers. We hageiqusly discussed how to measure it. Given a dataset
of already-classified instances, you would use a suitabtbadeholdout, repeated holdout;fold cross-validation,
repeated:-fold cross-validation or LOOCV) to measure the accuraogauth classifier. It is important that you use the
same training and tests for each classifier. For exampleyifaye using the holdout method and you have partitioned
the dataset into 66% training instances and 34% test inssatften each classifier that you are comparing should be
trained on the same training set and tested on the same telitisalso important that you don’t cheat when setting
parameters. This has to be done using a validation set — sesmther lecture.

When comparing different classifiers, it can be useful tduide a simple-minded classifier, to act as a benchmark.
One simple benchmark is the classifier that always returasrtijority class in its training set. So, for example, if
the training set contains 75% spam and 25% ham, this classifiealways returnclass= spam It will be correct

approximately 75% of the time! So if your more sophisticatledsifiers (naive Bayes N N or some new algorithm
you've invented) can’t do better than 75% accuracy thenafotheir sophistication, they aren’t learning predictive
relationships from the data.

Once you have obtained accuracy figures for each classiéiefl] pe able to see whether they outperform whichever
classifiers you included as benchmarks, and you'll be atde¢owhich of the classifiers is best (highest accuracy). At
this point, you consult a statistics book or a statisticianduse you need to dosgnificance testThis will tell you
how confident you can be that there really is a difference.

3 Task Characteristics

Different classifiers may be better suited to different sagtor example, some might be better able to handle numeric
attributes than others; some might be best-suited to takksenthere are only two classes; etc.

3.1 Input data types

Are some of the classifiers better-suited to numeric inpBs@ean inputs? Symbolic inputs? Mixtures? | leave you
to think about this for yourselves.

3.2 Number of classes

Are some of the classifiers better-suited to problems in vihiere are only two classes? How well do they handle
more than two classes? | leave you to think about this for selues.

3.3 Missing values

Itis notuncommon that instances in either the training stit@test set have missing values for certain of the atefhut
For example, a bank might describe people who apply for loairgy just two attributes: salary and age. A training
instance might be missing the age, for exampsalary = 20000, class= noLoar}. A test instance might be missing
the salary, for examplelage= 25}.

Making this more difficult is that missing values can havéediént interpretations:

Value unknown: we know the person has a salary but we don’t know what it is;
Value inapplicable: we know the person doemthave a salary; or

Status unknown: we do not know whether the person has a salary or not.

People building classifiers have not been very good at makiesgg distinctions!

Can a classifier’s learning step cope with missing values® &alassifier's classification step cope with missing
values? Suppose instances have three attribdteB8,andC, but some are missing a value fdr

Naive Bayes: This copes well with missing values. There are several @mhres, some better-motivated than others.

We mention just a couple.

Learning: When computing®(A = alclass= c¢), you simply ignore instances in the training set which lack a
value for attributeA.

Classifying: As you know, for an instance with no missing values, we woulthinto computeP(class =
cl|A = a,B = b,C = c) for each clasg! € L. We would uses Bayes’ rule and we would assume
conditional independence to rewrite this B§A = a|class = cl) x P(B = blclass= cl) x P(C =
clclass = ¢l) x P(Cclass = cl) (ignoring the divisor as usual). If the query is missing aueafor
attributesA we can either

« simply ignore this attribute, i.e. compul¥ B = b|class= cl) x P(C = c|class= cl) x P(Cclass =
cl); or

« average the probabilities for each of the possible valoegHis attribute. (Again there are more
advanced variants in the case of continuous-valued atsbuhich have not been discretised.)

The second option is particularly well-suited to missintpea that mean ‘value inapplicable’.
kENN:

Learning: Nothing special needs to be done: just store the dataset.

Classifying: The local distance functions need to be redefined so thatdaeyope with missing values. A
common approach is simply for the local distance funciisn, to return the maximum distance (typically
1) if eitherz or ¢ is missing its value for attributel. This is somewhat crude, and may not reflect the
different kinds of missing values described above.

Rules:

Learning: Since we did not study any rule learning algorithms in thisdoie, we can't really consider how
well they cope with missing values.

Classifying: The forwards- and backwards-chaining algorithms do notlree® modification. However, if a
rule mentions attributel and the instance to be classified has no value4pthen that rule will never
succeed. This might result in the instance being misclasisd failing to be classified at all.

Neural networks: Neural networks cannot handle instances with missing galseme value must be placed onto
each input unit. There are three possibilities — see the penetgraph.

There are, of course, three possibilities that work witttal classifiers: (a) remove from your dataset any instances
that have missing values; (b) replace each missing valugsaxdummy value (if one is available) with the risk that
this will make learning/classifying harder (e.g. it mayrtw linearly separable function into one that is not linearly
separable); and (c) replace missing values with ‘made uplegae.g. in the case of a numeric attribute, the mean or
mode could be used.

3.4 Noise

We'll use the word ‘noise’ in a relatively narrow sense. Asyitraining set is one in which instances may have
incorrect values for the attributes or class. For exampledrinking dataset is very noisy: people misreported their
weight, the duration of their drinking, and the number oftsimif alcohol consumed. If the breathalyser equipment
was at all faulty or used incorrectly, then their class (urd@ver) might be incorrect too. Obviously, we cannot hope
to learn a perfect classifier from a noisy training set. Thestjon is: how sensitive are different classifiers to noise?

This question is best answered by running experiments ardumiag accuracy. (We could even introduce random
errors into the training set and see how quickly accurady &if.)

In general, rule-based systems (at least, of the kind wewkdd at so far) tend to be very brittle in the face of noise,
whereas naive BayeBN N and neural networks tend to be more robust. The accuracyieé Bayes is unlikely to
be badly damaged by small inaccuracies in the probabiljiegticularly since we're only interested in seeing which
is the largest)k N NV can generally be made more robust by increasirgnd, sometimes, by reducing the weight of
local distances computed on unreliable attributes; theracy of a neural network is unlikely to be badly damaged by
small inaccuracies in the weights.

4 Efficiency

When comparing different classifiers for efficiency, we needonsider four factors: their time- and space-efficiency
for the learning step, and their time- and space-efficiencytfe classifying step.

I leave you to think about this for yourselves.

5 Transparency

| am using the word ‘transparency’ to bundle together a nurabissues concerning the degree to which human users
will find different classifiers to be intelligible. There awo points where we might wish for ‘transparency’.

Learning step. In the case of eager learners, after the learning step wetmdgge that the system can present an
intelligible version of what it has learned.

Naive Bayes classifiers can display their probabilities] there are some nice graphical ways of presenting these to
allow easy visualisation. FdrN N, people have devised graphical ways of visualising theeraatof the system.
Rule-based systems can display their rules, and these miayetiggible to human experts. There is not much that
a neural network can do: displaying their weights will hetpane. There has been research into trying to extract
rules from networks, so that these can be displayed. Butgiregl, we have to conclude that neural networks are a
‘black-box’.

Classification step. A classifier should be able txplainwhy an instance has been classified the way that it has,
and it should be able to reportésnfidencen its classification. Let’s look at these in turn.

Explanations are particularly important in safety-catidomains (especially where life is endangered) or in domai
where litigation risks and costs are high. A naive Bayessifer can present rudimentary explanations by presenting
the probabilities that it computed. A rule-based systemdiaplay a trace of the rules that fired. This might be
adequate if the rules are reasonably intelligible to begih.viNeural networks can offer nothing.

kN N’s explanations have been found to be especially good: #sifications are based directly on already-classified
instances (the neighbours) and these instances can baydidpb provide compelling explanations for the classifica-
tion. Recent research (some of it done here in my UCC reseaoelp) is further improving: N N's explanations.

Users may also want to know how confident a classifier is thiatritaking the right classification. A naive Bayes
classifier can compare the probabilities it computes fohedass: the more different the probabilities, the more
confident it can be. A rule-based classifier has no way of dfyarg its confidence, unless the rules themselves
have probabilities associated with themN N classifiers can quantify their confidence based on: how airtiile
neighbours are tg and the degree to which the neighbours agree or disagreeaNwtworks can do little to quantify
their confidence.

6 Incorporation of prior knowledge

Classifiers differ in the ease with which they can incorp@mator knowledge. By prior knowledge, we simply mean
knowledge that human experts already possess about thewastton’t want such knowledge to go to waste. Can it
be used to initialise the system, either just prior to therlesy step or even in place of the learning step?

In the case of a naive Bayes classifier, for example, humperexmight already have some sense of the probabilities
needed. If so, the classifier could be built using these husog@plied probabilities or we could work out some way of
combining the human-supplied probabilities with ones coted from a dataset.

Experts might be able to supply some or all of the rules neégealrule-based classifier. The learning step, if takes
place at all, would only need to learn additional rules toezamstances not already covered by the human-supplied
rule.

When building & N N classifier, human experts can use their knowledge to designlkdge-intensive local distance
functions and also, if the global distance is to be a weigkted or weighted average of the local distances, experts
might be able to choose the weights (attributes importgnddaman experts might also exercise judgement over
which already-classified instances they would like to idelin thek N N classifier's dataset.

There is little that human experts can do to encode their priowledge into neural networks. One line of research
did take human-supplied rules and use these to influencesthrk architecture/topology and the initial weights (see
the exercise at the end of these notes).

7 Incremental learning

Up to now, we have separated our presentation of classifiersilearning step and a classification step. But suppose
new already-classified examples become available aftesythiem has finished its learning step and is now being
used for classification. Indeed, often these new exampliésitise because the user of the classifier will confirm or
disconfirm whether the system got the classification riglot. é&xample, in a spam filter the user might be willing to
give feedback in the hope of improved classification acgurac

The ability to continue to learn is important: it can make ateyn adapt to changing circumstances. Consider spam
filtering for example:P(class= span) is very different today from what it was a few years ago. Socthestion is:

can we build versions of these classifiers that take on nemirigagexamples incrementally, or do they only operate in
‘batch’ mode?

Naive Bayes classifiers can update probabilities in aremental fashionk N N classifiers can store new examples
in their dataset as they arise. Of course, there is a risktligatlataset grows too large, causing a degradation in
classification efficiency. However, there is research irags\of editing the dataset to reduce its size, while presgrvi
its classification accuracy.

Rule-based systems and neural networks cannot, in geta@lon new examples incrementally. The best we can do
in general is add the new examples to the original trainin@sd retrain the system from scratch on the enlarged set
of instances.

Exercise (Part of a past exam question)

This question is about TLUs, neural networks and rule-batassifiers. Throughout, assume the following (which
differ from what we used in lectures):

« theactivation functiorof the TLUs,g, is defined as follows:

) - 1 ife>0
9\%) =def\ _1 otherwise

wheref is the threshold of the TLU; and

« -1 will denote false and 1 will denote true.

1. Design a TLU which has two inputs ands,. The inputs can take values of -1 or 1. The TLU should compute
the conjunction of; andss, s1 A s2. Give the two weights and the threshold.

. Suppose you wanted your TLU to compute the conjunctiomadrhitrary numbern of inputs,n > 1. What
weights and threshold would you use?

. Similarly, give the weights and threshold for a TLU thatmutes the disjunction of two inputs; V sa.
. Similarly, give the weights and threshold for a TLU thaigutes the disjunction of inputs,n > 1.

. Hence continuing to assume that all inputstake on values of only -1 or 1, design a fully connected, lagier
feedforward neural network that outputs a 1 in exactly theesaircumstances that the following rules would
conclude thap is true:

(s1As3)=p
(s1 AsaAsy)=p

. A knowledge engineer elicits a set of rules from a medic gecialises in diseases of the male sarcophagus.
These disfiguring diseaseamulus ossuaryandcromlech are treated using either the diatacebinor the drug
Incubia

(badBreathh dizzinesy = tumulus
(badBreath\ hairLossA toothaché = tumulus
(dizziness\ runnyNosg = ossuary
(hairLossA runnyNosg = ossuary

redEars=- cromlech

tumulus=- Placebin

ossuary=- Incubio

cromlech=> Placebin

The knowledge engineer encodes the rules as a neural netsioid the ideas embodied in your answer to the
previous question.

She then obtains some historical data, showing, for eagbrahis symptoms and which of the two drugs was
found to be effective. Using the back-propagation algamitehe trains the neural network on the historical data.
Discuss the advantages that the knowledge engineer beliglleensue from this combined rule-and-network

approach.

