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Problems for User-Based  
Collaborative Recommenders 

Efficiency 

• The user-based kNN 
approach compares the 
user to every other user 
– finding the neighbours takes 

time and space that grows 
linearly with the number of 
users (and the number of 
items) 

• Especially slow if many 
more users (e.g. millions) 
than items (e.g. thousands) 

 

Coverage 

• Sparsity: Typical users rate 
few items (e.g. hundreds) 
– difficult to find neighbours 

– so recommendations cannot 
always be made 

Item-Based  
Collaborative Recommenders 

• Amazon pioneered an alternative 

– item-based collaborative recommenders 
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• We can compute similarity between columns (item-
item similarity) just as easily as we can compute 
similarity between rows (user-user similarity) 

 

 

 

 

 

 

• Item are likely to have more ratings than user’s have 
– so easier to find neighbours 

 

 

 

 

 

 

Item-Item Similarity, 𝑠𝑖𝑚(𝑖, 𝑗) 

Alien Brazil Crash Dumbo E.T. Fargo 

Ben 2 5 3 1 2 

Clare 5 5 3 4 

Dan 3 

Edd 5 4 2 4 3 3 

Flo 2 5 4 4 

Collaborative Recommenders 

User-Based 

• Find users who are similar 
to 𝑢 
– user-user similarity 

• Predict 𝑢’s rating for 𝑖 based 
on the neighbours’ ratings 
for 𝑖 

Item-Based 

• Find items in 𝑢’s profile that 
are similar to 𝑖 
– item-item similarity 

• Predict 𝑢’s rating for 𝑖 based 
on 𝑢’s ratings for these 
items 

• Item-Based Collaborative Recommending uses an algorithm 
that is similar to the kNN algorithm we used for Content-
Based Recommending 
• except that the similarity uses ratings, not descriptions 

kNN for Item-Based  
Collaborative Recommending 

 for each candidate item, 𝑖 
for each item in the user’s profile, 𝑗 

 compute 𝑠𝑖𝑚 𝑖, 𝑗  

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘  
         items in the profile that are most similar to 𝑖 

   and whose similarity to 𝑖 is positive 

let the predicted rating for item 𝑖 be the average of 
      the ratings in 𝑁𝑁 

recommend the candidates in descending order of 
predicted rating We saw nearly the same algorithm 

for content-based recommending 
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Notation 

𝕌 the set of all users 

𝕀 the set of all items 

𝕌𝑖 the set of users who have rated item 𝑖 

𝕌𝑖,𝑗 the set of users who have rated both item 𝑖 and item 𝑗 

𝕀𝑢 the set of items that have been rated by user 𝑢 

𝕀𝑢,𝑣 the set of items that have been rated by both user 𝑢 and 
user 𝑗 

𝑟𝑢,𝑖 user 𝑢’s actual rating for item 𝑖 

𝑟𝑢,𝑖  user 𝑢’s predicted rating for item 𝑖 

Item-Item Similarity, 𝑠𝑖𝑚(𝑖, 𝑗) 

• Many systems use an adjusted cosine 
correlation 

 (𝑟𝑣,𝑖 − 𝑟𝑣 )(𝑟𝑣,𝑗 − 𝑟𝑣 )𝑣∈𝕌𝑖,𝑗

 (𝑟𝑣,𝑖 − 𝑟𝑣 )
2

𝑣∈𝕌𝑖,𝑗 
 (𝑟𝑣,𝑗 − 𝑟𝑣 )

2
𝑣∈𝕌𝑖,𝑗 

 

• Notice how it is computed over all users 𝑣 
who have rated both 𝑖 and 𝑗, 𝕌𝑖,𝑗   

– 𝑟𝑣  is the average over all of user 𝑣’s ratings 

Example: 𝑠𝑖𝑚(𝐴𝑙𝑖𝑒𝑛, 𝐵𝑟𝑎𝑧𝑖𝑙) 

Alien Brazil Crash Dumbo E.T. Fargo 

Ben 2 5 3 1 2 

Clare 5 5 3 4 

Dan 3 

Edd 5 4 2 4 3 3 

Flo 2 5 4 4 

 (𝑟𝑣,𝑖 − 𝑟𝑣 )(𝑟𝑣,𝑗 − 𝑟𝑣 )𝑣∈𝕌𝑖,𝑗

 (𝑟𝑣,𝑖 − 𝑟𝑣 )
2

𝑣∈𝕌𝑖,𝑗 
 (𝑟𝑣,𝑗 − 𝑟𝑣 )

2
𝑣∈𝕌𝑖,𝑗 
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Similarity: Niceties 

• Again, could normalize all ratings in advance 

• Again, small possibility that the divisor will be 
zero 

– in which case, take the similarity to be zero 

• But we don’t normally need any Significance 
Weighting 

𝑢’s Predicted Rating for 𝑖, 𝑟𝑢,𝑖  

• Following the same reasoning as before, we take 
a weighted average:  

𝑟𝑢,𝑖 =
 𝑠𝑖𝑚 𝑖, 𝑗 ×  𝑟𝑢,𝑗𝑗∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝑁𝑁

 

• (This time 𝑁𝑁 is not a set of the most similar 
users who have rated 𝑖; it is the set of most 
similar items rated by 𝑢) 

• There is no need to adjust here for user’s mean 
ratings because the only ratings used here come 
from the same user 

Example, part I 

 
 
 
 
 
 
 
 
 

• We’ll predict Ann’s rating for Brazil 
• Question: What similarities will we compute? Why? 

Ann 2 4 3 5 

Alien Brazil Crash Dumbo E.T. Fargo 

Ben 2 5 3 1 2 

Clare 5 5 3 4 

Dan 3 

Edd 5 4 2 4 3 3 

Flo 2 5 4 4 
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Example, part II 

• The similarities 
– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐴𝑙𝑖𝑒𝑛 = -0.23 

– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐷𝑢𝑚𝑏𝑜 = -0.26 

– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐸. 𝑇. = 0.28 
– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐹𝑎𝑟𝑔𝑜 = 0.18  

• Suppose 𝑘 =  3 

• Brazil’s 3 nearest neighbours are E.T, Fargo and 
Alien 

• But we ignore Alien. Why? 

Example, part III 

𝑟𝑢,𝑖 =
 𝑠𝑖𝑚 𝑖, 𝑗 ×  𝑟𝑢,𝑗𝑗∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝑁𝑁

 

Alien Brazil Crash Dumbo E.T. Fargo 

Ann 2 4 3 5 

User-Based vs Item-Based 

User-based 

• User-based seems ‘truer’ to 
word-of-mouth 
recommendations 

• Typically more accurate if 
there are fewer users than 
items, e.g. a research paper 
recommender 

• People think 
– it is more personalized 

(probably not true) 

– more serendipity (possibly 
true) 

 

Item-based 

• Item-based is often more 
efficient 
– you are only computing the 

similarity between 𝑖 and each 
item that 𝑢 has rated 

– more amenable to pre-
computation because item-
item similarity is likely to be 
more stable than user-user 
similarity – why? 

• Typically more accurate if there 
are many more users than items 
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DIVERSITY 

Diversity 

• Suppose the items in a 
recommendation list are 
similar to each other 
– this reduces the chance 

that one of the 
recommendations will 
satisfy the user 

• In many cases, we should 
seek to recommend items 
that 
– are similar to the user’s 

preferences 

– but are different from each 
other 

• Diversity is a property 
– not of a single item 

– but of the 
recommendation list as a 
whole 

Bounded Greedy Selection 

• Suppose we want to recommend 𝑛 items 

• Get a larger set of recommendations (𝑏 × 𝑛) 
from your recommender 

• Then select 𝑛 from these, one by one, 
ensuring that each one we select has 

– high predicted rating 

– but also low total similarity to those already 
selected 
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Bounded Greedy Selection Algorithm 

let Recs = 𝑏 × 𝑛 items with highest predicted 
ratings (found using any recommender you like) 

let Result = [ ] 

do the following 𝑛 times 
let best = the member of Recs for which 
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡) is highest 

insert Best into Result 

remove Best from Recs 

recommend Result 

Quality for Diversification 

• This require us to calculate 𝑠𝑖𝑚 𝑖, 𝑗  

– can be done based on item descriptions, if available 

– or can be done as per item-based  collaborative 
recommender 

• What is the purpose of 𝛼? 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡 =  𝑟𝑢,𝑖 +𝛼 × 𝑅𝑒𝑙𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡  

𝑅𝑒𝑙𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡 =   

1 
 

 
 (1 −𝑠𝑖𝑚 𝑖,𝑗 )𝑗∈𝑅𝑒𝑠𝑢𝑙𝑡

𝑠𝑖𝑧𝑒(𝑅𝑒𝑠𝑢𝑙𝑡)

  

if Result is empty 

otherwise 

HYBRIDS RECOMMENDERS 
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Hybrid Recommenders 

• A hybrid combines 
different types of 
recommenders 

• Main motivation 

– the recommenders 
compensate for each 
others’ weaknesses 

• E.g. a recommender 
that 

– tries to use kNN for a 
user-based collaborative 
recommendation 

– but when this can’t be 
done (why?), it resorts to 
a non-personalised 
recommendation 

Switching 

• Switching 

– decide on the best 
recommender  
• e.g. how many ratings the 

user has 

– run the selected 
recommender 

• Issues 

– requires a reliable 
switching criterion 

Recommender A 

Recommender B 

recommendations 

switching 
criterion 

Mixing 

• Mixing 

– run all recommenders  

– merge their 
recommendations 

• Issues 

– how to merge ranked 
lists 
• e.g. Borda count 

Recommender A 

Recommender B 

Merge 

recommendations 

recommendations 

merged 
recommendations 
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Weighting 

• Weighting 

– run all recommenders 
• obtain predicted ratings 

or recommendations with 
confidence scores  

– combine the ratings or 
scores 

• Issues 

– how to combine the 
scores 
• e.g. a linear formula 
𝑟𝑢,𝑖 = 𝑤𝐴𝑟𝐴,𝑢,𝑖 +𝑤𝐵𝑟𝐵,𝑢,𝑖  

– how to assign weights, 
𝑤𝐴 and 𝑤𝐵 

Recommender A 

Recommender B 

Weight 

predicted  
ratings 

predicted  
ratings 

recommendations 
rank 

predictions 

Netflix Prize Winners 

• BelKor’s Pragmatic 
Chaos  won the Netflix 
prize  

• Their solution uses 
weighting: 
– over 500 algorithms that 

predict ratings, including 
• user-based and item-

based nearest-neighbour 
methods 

• matrix factorization 

• Restricted Boltzmann 
Machines 

– the weights for 
combining are learned 
from the data 

 

Cascading 

• Cascading 

– run a pipeline of 
recommenders  

– B filters or re-scores or 
re-ranks output of  A 

• Issues 

– B does not introduce 
new recommendations 
so A needs to be a strong 
recommender 

Recommender A Recommender B 
recommendations recommendations 
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Other ‘Hybrids’ 

• There are other ways of 
combining recommenders 
– take knowledge used by one 

kind of recommender and 
make it available to another 

– so you only run one 
recommender 

• E.g. 
– create pseudo-users, e.g. one 

per movie director or genre 

– the Woody Allen pseudo-user 
has high ratings for his films 

– use these pseudo-users in a 
normal collaborative 
recommender 
• Woody Allen lovers will be 

similar to the Woody Allen 
pseudo-user 

– we don’t have to wait for real 
users to rate a new Woody 
Allen film 


