CS6120: Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology UCC

Problems for User-Based Collaborative Recommenders

Efficiency

- The user-based kNN approach compares the user to every other user
 - finding the neighbours takes time and space that grows linearly with the number of users (and the number of items)
- Especially slow if many more users (e.g. millions) than items (e.g. thousands)

- Sparsity: Typical users rate few items (e.g. hundreds)
 difficult to find neighbours
 - so recommendations cannot always be made

Item-Based Collaborative Recommenders

• Amazon pioneered an alternative

- item-based collaborative recommenders

Item-Item Similarity, sim(i, j)

· We can compute similarity between columns (itemitem similarity) just as easily as we can compute similarity between rows (user-user similarity)

	Alien	Brazil	Crash	Dumbo	E.T.	Fargo
Ben		2	5	3	1	2
Clare	5	5		3	4	
Dan					3	
Edd	5	4	2	4	3	3
Flo	2	5	4	4		

• Item are likely to have more ratings than user's have - so easier to find neighbours

Collaborative Recommenders

User-Based

Item-Based

- Find users who are similar to u
- Find items in *u*'s profile that are similar to i - item-item similarity
- user-user similarity • Predict *u*'s rating for *i* based • Predict *u*'s rating for *i* based on the neighbours' ratings for i
 - on *u*'s ratings for these items

n

- Item-Based Collaborative Recommending uses an algorithm that is similar to the kNN algorithm we used for Content-Based Recommending
 - · except that the similarity uses ratings, not descriptions

kNN for Item-Based **Collaborative Recommending**

for each candidate item, i

for each item in the user	's profile, j
compute <i>sim</i> (<i>i</i> , <i>j</i>)	
let <i>NN</i> be the set of <i>k</i> ne items in the profi	arest neighbours, i.e. the k le that are most similar to i
and who	ose similarity to i is positive
let the predicted rating for	or item i be the average of the ratings in NN
recommend the candidat	tes in descending order of
predicted rating	We saw nearly the same algorithm
	for content-based recommending

\mathbf{n}	Fa	670	\mathbf{n}	r
U	ιa	U	U	

U	the set of all users
I	the set of all items
\mathbb{U}_i	the set of users who have rated item i
$\mathbb{U}_{i,j}$	the set of users who have rated both item i and item j
\mathbb{I}_u	the set of items that have been rated by user u
$\mathbb{I}_{u,v}$	the set of items that have been rated by both user \boldsymbol{u} and user \boldsymbol{j}
r _{u,i}	user <i>u</i> 's <i>actual</i> rating for item <i>i</i>
$\widehat{r_{u,i}}$	user <i>u</i> 's <i>predicted</i> rating for item <i>i</i>

Item-Item Similarity, sim(i, j)

• Many systems use an *adjusted cosine* correlation $\sum_{r=1}^{\infty} (r_r - \overline{r})(r_r - \overline{r})$

$$\frac{\sum_{v \in \mathbb{U}_{i,j}} (r_{v,i} - \overline{r_v})(r_{v,j} - \overline{r_v})}{\sqrt{\sum_{v \in \mathbb{U}_{i,j}} (r_{v,i} - \overline{r_v})^2} \sqrt{\sum_{v \in \mathbb{U}_{i,j}} (r_{v,j} - \overline{r_v})^2}}$$

• Notice how it is computed over all users v who have rated both i and j, $\mathbb{U}_{i,j}$

 $-\overline{r_v}$ is the average over all of user v's ratings

Example: <i>sim(Alien, Brazil)</i>								
$\sum_{\nu \in U_{l,l}} (r_{\nu,i} - \overline{r_{\nu}}) (r_{\nu,j} - \overline{r_{\nu}})$								
$\frac{1}{\left[\sum_{\nu \in \mathbb{U}_{i,i}} (r_{\nu,i} - \overline{r_{\nu}})^2\right] \left[\sum_{\nu \in \mathbb{U}_{i,i}} (r_{\nu,j} - \overline{r_{\nu}})^2\right]}$								
N N N								
	Alien	Brazil	Crash	Dumbo	E.T.	Fargo		
Ben		2	5	3	1	2		
Clare	5	5		3	4			
Dan					3			
Edd	5	4	2	4	3	3		
Flo	2	5	4	4				

Similarity: Niceties

- Again, could normalize all ratings in advance
- Again, small possibility that the divisor will be zero

 $-\operatorname{in}$ which case, take the similarity to be zero

• But we don't normally need any Significance Weighting

u's Predicted Rating for *i*, $\widehat{r_{u,i}}$

• Following the same reasoning as before, we take a weighted average:

$$\widehat{r_{u,i}} = \frac{\sum_{j \in NN} sim(i,j) \times r_{u,j}}{\sum_{j \in NN} sim(i,j)}$$

- (This time NN is not a set of the most similar users who have rated *i*; it is the set of most similar items rated by *u*)
- There is no need to adjust here for user's mean ratings because the only ratings used here come from the same user

Example, part I								
	Alien	Brazil	Crash	Dumbo	E.T.	Fargo		
		2	5	3	1	2		
	5	5		3	4			
					3			
	5	4	2	4	3	3		
	2	5	4	4				
Ann	2			4	3	5		

• We'll predict Ann's rating for Brazil

• Question: What similarities will we compute? Why?

Example, part II

- The similarities
 - -sim(Brazil, Alien) = -0.23
 - -sim(Brazil, Dumbo) = -0.26
 - -sim(Brazil, E.T.) = 0.28
 - -sim(Brazil, Fargo) = 0.18
- Suppose k = 3
- Brazil's 3 nearest neighbours are E.T, Fargo and Alien
- But we ignore Alien. Why?

Example, part III								
	Alien	Brazil	Crash	Dumbo	E.T.	Fargo		
Ann	2			4	3	5		
Ann 2 4 3 5 $r_{u,i}^{\sim} = \frac{\sum_{j \in NN} sim(i,j) \times r_{u,j}}{\sum_{j \in NN} sim(i,j)}$								

User-Based vs Item-Based

User-based

- User-based seems 'truer' to word-of-mouth recommendations
- Typically more accurate if there are fewer users than items, e.g. a research paper recommender
- People think
 - it is more personalized (probably not true)
 - more serendipity (possibly true)

Item-based

- Item-based is often more efficient
 - you are only computing the similarity between *i* and each item that *u* has rated
 more amenable to pre-
 - computation because itemitem similarity is likely to be more stable than user-user similarity – why?
- Typically more accurate if there are many more users than items

DIVERSITY

Diversit

- Suppose the items in a recommendation list are similar to each other
 - this reduces the chance that one of the recommendations will satisfy the user

- In many cases, we should seek to recommend items that
 - are similar to the user's preferences
 - but are different from each other
- Diversity is a property

 not of a single item
 - not of a single
 but of the
 - recommendation list as a whole

Bounded Greedy Selection

- Suppose we want to recommend n items
- Get a larger set of recommendations $(b \times n)$ from your recommender
- Then select *n* from these, one by one, ensuring that each one we select has
 - high predicted rating
 - but also low total similarity to those already selected

Bounded Greedy Selection Algorithm

let $Recs = b \times n$ items with highest predicted ratings (found using any recommender you like) let Result = []**do** the following n times

let best = the member of Recs for which Quality(i, Result) is highest insert Best into Result remove Best from Recs

recommend Result

Quality for Diversification

 $Quality(i, Result) = \hat{r_{u,i}} + \alpha \times RelDiversity(i, Result)$

 $RelDiversity(i, Result) = \begin{cases} \sum_{j \in Result} (1 - sim(i, j)) \\ size(Result) \end{cases} otherwise$

1 if *Result* is empty

- This require us to calculate sim(i, j)
 - can be done based on item descriptions, if available
 or can be done as per item-based collaborative
 - recommender
- What is the purpose of *α*?

HYBRIDS RECOMMENDERS

Hybrid Recommenders

- A hybrid combines different types of recommenders
- Main motivation

 the recommenders compensate for each others' weaknesses

• E.g. a recommender that

- tries to use kNN for a user-based collaborative recommendation
- but when this can't be done (why?), it resorts to a non-personalised recommendation

Netflix Prize Winners

• *BelKor's Pragmatic Chaos* won the Netflix prize

- Their solution uses weighting:
 - over 500 algorithms that predict ratings, including
 user-based and item-
 - user-based and itembased nearest-neighbour methods
 - matrix factorization
 - Restricted Boltzmann Machines
 - the weights for combining are learned from the data

Other 'Hybrids'

- There are other ways of combining recommenders
 - take knowledge used by one kind of recommender and make it available to another
 - so you only run one recommender

- E.g. create pseudo-users, e.g. one per movie director or genre
 - the Woody Allen pseudo-user has high ratings for his films
 use these pseudo-users in a normal collaborative
 - recommender
 - Woody Allen lovers will be similar to the Woody Allen pseudo-user
 - we don't have to wait for real users to rate a new Woody Allen film