
21/02/2014

1

CS6120:
Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology

UCC

Problems for User-Based
Collaborative Recommenders

Efficiency

• The user-based kNN
approach compares the
user to every other user
– finding the neighbours takes

time and space that grows
linearly with the number of
users (and the number of
items)

• Especially slow if many
more users (e.g. millions)
than items (e.g. thousands)

Coverage

• Sparsity: Typical users rate
few items (e.g. hundreds)
– difficult to find neighbours

– so recommendations cannot
always be made

Item-Based
Collaborative Recommenders

• Amazon pioneered an alternative

– item-based collaborative recommenders

21/02/2014

2

• We can compute similarity between columns (item-
item similarity) just as easily as we can compute
similarity between rows (user-user similarity)

• Item are likely to have more ratings than user’s have
– so easier to find neighbours

Item-Item Similarity, 𝑠𝑖𝑚(𝑖, 𝑗)

Alien Brazil Crash Dumbo E.T. Fargo

Ben 2 5 3 1 2

Clare 5 5 3 4

Dan 3

Edd 5 4 2 4 3 3

Flo 2 5 4 4

Collaborative Recommenders

User-Based

• Find users who are similar
to 𝑢
– user-user similarity

• Predict 𝑢’s rating for 𝑖 based
on the neighbours’ ratings
for 𝑖

Item-Based

• Find items in 𝑢’s profile that
are similar to 𝑖
– item-item similarity

• Predict 𝑢’s rating for 𝑖 based
on 𝑢’s ratings for these
items

• Item-Based Collaborative Recommending uses an algorithm
that is similar to the kNN algorithm we used for Content-
Based Recommending
• except that the similarity uses ratings, not descriptions

kNN for Item-Based
Collaborative Recommending

 for each candidate item, 𝑖
for each item in the user’s profile, 𝑗

 compute 𝑠𝑖𝑚 𝑖, 𝑗

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘
 items in the profile that are most similar to 𝑖

 and whose similarity to 𝑖 is positive

let the predicted rating for item 𝑖 be the average of
 the ratings in 𝑁𝑁

recommend the candidates in descending order of
predicted rating We saw nearly the same algorithm

for content-based recommending

21/02/2014

3

Notation

𝕌 the set of all users

𝕀 the set of all items

𝕌𝑖 the set of users who have rated item 𝑖

𝕌𝑖,𝑗 the set of users who have rated both item 𝑖 and item 𝑗

𝕀𝑢 the set of items that have been rated by user 𝑢

𝕀𝑢,𝑣 the set of items that have been rated by both user 𝑢 and
user 𝑗

𝑟𝑢,𝑖 user 𝑢’s actual rating for item 𝑖

𝑟𝑢,𝑖 user 𝑢’s predicted rating for item 𝑖

Item-Item Similarity, 𝑠𝑖𝑚(𝑖, 𝑗)

• Many systems use an adjusted cosine
correlation

 (𝑟𝑣,𝑖 − 𝑟𝑣)(𝑟𝑣,𝑗 − 𝑟𝑣)𝑣∈𝕌𝑖,𝑗

 (𝑟𝑣,𝑖 − 𝑟𝑣)
2

𝑣∈𝕌𝑖,𝑗
 (𝑟𝑣,𝑗 − 𝑟𝑣)

2
𝑣∈𝕌𝑖,𝑗

• Notice how it is computed over all users 𝑣
who have rated both 𝑖 and 𝑗, 𝕌𝑖,𝑗

– 𝑟𝑣 is the average over all of user 𝑣’s ratings

Example: 𝑠𝑖𝑚(𝐴𝑙𝑖𝑒𝑛, 𝐵𝑟𝑎𝑧𝑖𝑙)

Alien Brazil Crash Dumbo E.T. Fargo

Ben 2 5 3 1 2

Clare 5 5 3 4

Dan 3

Edd 5 4 2 4 3 3

Flo 2 5 4 4

 (𝑟𝑣,𝑖 − 𝑟𝑣)(𝑟𝑣,𝑗 − 𝑟𝑣)𝑣∈𝕌𝑖,𝑗

 (𝑟𝑣,𝑖 − 𝑟𝑣)
2

𝑣∈𝕌𝑖,𝑗
 (𝑟𝑣,𝑗 − 𝑟𝑣)

2
𝑣∈𝕌𝑖,𝑗

21/02/2014

4

Similarity: Niceties

• Again, could normalize all ratings in advance

• Again, small possibility that the divisor will be
zero

– in which case, take the similarity to be zero

• But we don’t normally need any Significance
Weighting

𝑢’s Predicted Rating for 𝑖, 𝑟𝑢,𝑖

• Following the same reasoning as before, we take
a weighted average:

𝑟𝑢,𝑖 =
 𝑠𝑖𝑚 𝑖, 𝑗 × 𝑟𝑢,𝑗𝑗∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝑁𝑁

• (This time 𝑁𝑁 is not a set of the most similar
users who have rated 𝑖; it is the set of most
similar items rated by 𝑢)

• There is no need to adjust here for user’s mean
ratings because the only ratings used here come
from the same user

Example, part I

• We’ll predict Ann’s rating for Brazil
• Question: What similarities will we compute? Why?

Ann 2 4 3 5

Alien Brazil Crash Dumbo E.T. Fargo

Ben 2 5 3 1 2

Clare 5 5 3 4

Dan 3

Edd 5 4 2 4 3 3

Flo 2 5 4 4

21/02/2014

5

Example, part II

• The similarities
– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐴𝑙𝑖𝑒𝑛 = -0.23

– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐷𝑢𝑚𝑏𝑜 = -0.26

– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐸. 𝑇. = 0.28
– 𝑠𝑖𝑚 𝐵𝑟𝑎𝑧𝑖𝑙, 𝐹𝑎𝑟𝑔𝑜 = 0.18

• Suppose 𝑘 = 3

• Brazil’s 3 nearest neighbours are E.T, Fargo and
Alien

• But we ignore Alien. Why?

Example, part III

𝑟𝑢,𝑖 =
 𝑠𝑖𝑚 𝑖, 𝑗 × 𝑟𝑢,𝑗𝑗∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝑁𝑁

Alien Brazil Crash Dumbo E.T. Fargo

Ann 2 4 3 5

User-Based vs Item-Based

User-based

• User-based seems ‘truer’ to
word-of-mouth
recommendations

• Typically more accurate if
there are fewer users than
items, e.g. a research paper
recommender

• People think
– it is more personalized

(probably not true)

– more serendipity (possibly
true)

Item-based

• Item-based is often more
efficient
– you are only computing the

similarity between 𝑖 and each
item that 𝑢 has rated

– more amenable to pre-
computation because item-
item similarity is likely to be
more stable than user-user
similarity – why?

• Typically more accurate if there
are many more users than items

21/02/2014

6

DIVERSITY

Diversity

• Suppose the items in a
recommendation list are
similar to each other
– this reduces the chance

that one of the
recommendations will
satisfy the user

• In many cases, we should
seek to recommend items
that
– are similar to the user’s

preferences

– but are different from each
other

• Diversity is a property
– not of a single item

– but of the
recommendation list as a
whole

Bounded Greedy Selection

• Suppose we want to recommend 𝑛 items

• Get a larger set of recommendations (𝑏 × 𝑛)
from your recommender

• Then select 𝑛 from these, one by one,
ensuring that each one we select has

– high predicted rating

– but also low total similarity to those already
selected

21/02/2014

7

Bounded Greedy Selection Algorithm

let Recs = 𝑏 × 𝑛 items with highest predicted
ratings (found using any recommender you like)

let Result = []

do the following 𝑛 times
let best = the member of Recs for which
𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡) is highest

insert Best into Result

remove Best from Recs

recommend Result

Quality for Diversification

• This require us to calculate 𝑠𝑖𝑚 𝑖, 𝑗

– can be done based on item descriptions, if available

– or can be done as per item-based collaborative
recommender

• What is the purpose of 𝛼?

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑢,𝑖 +𝛼 × 𝑅𝑒𝑙𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡

𝑅𝑒𝑙𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖, 𝑅𝑒𝑠𝑢𝑙𝑡 =

1

 (1 −𝑠𝑖𝑚 𝑖,𝑗)𝑗∈𝑅𝑒𝑠𝑢𝑙𝑡

𝑠𝑖𝑧𝑒(𝑅𝑒𝑠𝑢𝑙𝑡)

if Result is empty

otherwise

HYBRIDS RECOMMENDERS

21/02/2014

8

Hybrid Recommenders

• A hybrid combines
different types of
recommenders

• Main motivation

– the recommenders
compensate for each
others’ weaknesses

• E.g. a recommender
that

– tries to use kNN for a
user-based collaborative
recommendation

– but when this can’t be
done (why?), it resorts to
a non-personalised
recommendation

Switching

• Switching

– decide on the best
recommender
• e.g. how many ratings the

user has

– run the selected
recommender

• Issues

– requires a reliable
switching criterion

Recommender A

Recommender B

recommendations

switching
criterion

Mixing

• Mixing

– run all recommenders

– merge their
recommendations

• Issues

– how to merge ranked
lists
• e.g. Borda count

Recommender A

Recommender B

Merge

recommendations

recommendations

merged
recommendations

21/02/2014

9

Weighting

• Weighting

– run all recommenders
• obtain predicted ratings

or recommendations with
confidence scores

– combine the ratings or
scores

• Issues

– how to combine the
scores
• e.g. a linear formula
𝑟𝑢,𝑖 = 𝑤𝐴𝑟𝐴,𝑢,𝑖 +𝑤𝐵𝑟𝐵,𝑢,𝑖

– how to assign weights,
𝑤𝐴 and 𝑤𝐵

Recommender A

Recommender B

Weight

predicted
ratings

predicted
ratings

recommendations
rank

predictions

Netflix Prize Winners

• BelKor’s Pragmatic
Chaos won the Netflix
prize

• Their solution uses
weighting:
– over 500 algorithms that

predict ratings, including
• user-based and item-

based nearest-neighbour
methods

• matrix factorization

• Restricted Boltzmann
Machines

– the weights for
combining are learned
from the data

Cascading

• Cascading

– run a pipeline of
recommenders

– B filters or re-scores or
re-ranks output of A

• Issues

– B does not introduce
new recommendations
so A needs to be a strong
recommender

Recommender A Recommender B
recommendations recommendations

21/02/2014

10

Other ‘Hybrids’

• There are other ways of
combining recommenders
– take knowledge used by one

kind of recommender and
make it available to another

– so you only run one
recommender

• E.g.
– create pseudo-users, e.g. one

per movie director or genre

– the Woody Allen pseudo-user
has high ratings for his films

– use these pseudo-users in a
normal collaborative
recommender
• Woody Allen lovers will be

similar to the Woody Allen
pseudo-user

– we don’t have to wait for real
users to rate a new Woody
Allen film

