CS6120: Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology UCC

Content-based

New item:

•

- can recommend new items even if they have not yet been rated (provided they have a description)
 New user:
- needs a profile of items plus their descriptions plus their ratings
- Serendipity:

 unlikely since recommendations are similar to profile items

User-Based Collaborative

- New item:
 cannot recommend new items
 - until they have been rated by at least one, preferably several users
- New user:
 - needs a profile of items plus their ratings
- Serendipity:
 - possible since one user's tastes may be extended by her neighbours' tastes

Evaluating Recommender Systems

- Many algorithms; many variations; many parameters
- We must make comparisons
 - Practitioner
 deciding what approach to use
 - Researcher
 - deciding when a new approach is better than existing approaches
- Evaluate by running experiments
 - involving two or more systems
 - recording and comparing metrics that attempt to measure desirable properties

Good Experimental Design

- Form a hypothesis:
 - e.g. system A will have higher accuracy than system B
 i.e. not a "fishing expedition"
- Control all other factors:
 - experimental conditions for systems A and B should vary only in what is being tested
 - i.e. make the comparison as fair as possible
- Be clear how to generalise the findings:
 - based on, e.g., how many users, how many datasets,...
 - use confidence tests

Types of Experime

- Offline experiments
 - use datasets
 - measure against some 'ground truth'
- User studies
 - recruit a set of users
 - measure their performance in a controlled environment on a set of tasks
- Online evaluation
 - use real users who are oblivious to the experiment
 - measure their performance when using variants of the deployed system

OFFLINE EXPERIMENTS

Offline Experiments

- Pro:
 - can compare many systems at low cost
- Con:
 - narrow set of metrics, based on whatever 'ground truth' you have in the dataset

Issues:

- ensure dataset has no distribution bias
- if you must simulate user behaviour, avoid oversimplifying the simulation
- ensure it's an allowable use of the data; ensure privacy is protected;...
- Good for identifying promising variants/winnowing out the rest

Datasets

•

- Offline experiments use pre-collected datasets
- Practitioners

 collect & understand your own dataset
- Researchers
- use a publicly available dataset
- www.grouplens.org/datasets/ movielens/: – MovieLens 100K, 1M and 10M
- Delicious
 Last.FM

· Datasets from

- MovieLens extended with IMDb/Rotten Tomatoes
- IMDb/Rotten Tomatoes – WikiLens
- BookCrossing
- Jester
- No longer available
- EachMovie
 Netflix
- Netflix

MovieLens 100k Dataset

- Collected from September 1997 to April 1998
- 100,000 ratings (1-5) from 943 users for 1682 movies
- For each movie, some identification and descriptive data including a set of genres
- For each user, some demographic data (age, sex, occupation, zip)
- Excludes users who had rated fewer than 20 movies and users who had incomplete demographic data

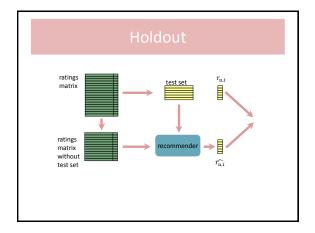
MovieLens 100k Dataset										
• u.data: userid, movieid, rating, timestamp										
	196		242	3		881250949				
		186	302	3		891717742				
 u.item: movieid, movie title, release date, video release date, IMDb URL, Unknown, Action, Adventure, Animation, Children's, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western 										
186	The Blue	es Brothers	1980 - h	ttp:// 0	10001	0 0 0 0 0 0	1 0 0 0 0 0 0			
• u.user: userid, age, gender, occupation, zip code										
		302	42	м	educator	77904				

· How do you know

- whether the recommender's prediction is right?
- You need the correct answer
 - the ground truth

- The key idea: split the dataset
 - use some ratings to build the recommender (training set)

- ask the recommender to predict what you withhold (test set)



Holdout

randomly split dataset into Train and Test

for each $r_{u,i}$ in Test

make prediction, $\widehat{r_{u,i}}$, using ratings in Train

compare $\widehat{r_{u,i}}$ with ground truth, $r_{u,i}$ in Test

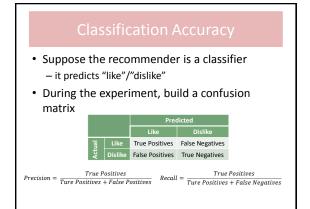
- This methodology is called *holdout*
 - because the true ratings are withheld from the system
 typically the split is 70%/30% or 80%/20% training/test

Repeated Holdout

- But suppose we get a lucky/unlucky training set/test set
- To avoid this, *repeat* the process and average the results
 - i.e. run the experiment 5 or 10 times with different random partitions

Accuracy

- We focus on accuracy of a user-based collaborative recommender
 - so the dataset can simply be a ratings matrix
- We look at
 - classification accuracy
 - rating accuracy
 - ranking accuracy





Ratings Accuracy

- Suppose the recommender does regression predicts ratings
- Measure the magnitude of the *error* between $r_{u,i}$ and $\hat{r_{u,i}}$
- To compute error take the difference $r_{u,i} \widehat{r_{u,i}}$ but
 - either getting the absolute value: $abs(r_{u,i} \widehat{r_{u,i}})$
 - or square it: $(r_{u,i} \widehat{r_{u,i}})^2$
 - why must we use abs or square?
 - what is the thinking behind squaring?

- Let *Test* be the set of ratings that you test on
- If you're using absolute difference, you compute the Mean Absolute Error (MAE):)

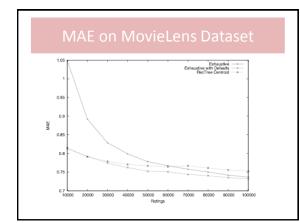
$$\sum_{r_{u,i}\in Test} abs(r_{u,i} - \hat{r_{u,i}})$$

|Test|

If you're squaring the difference, you compute the *Root* Mean Squared Error (RMSE):

$$\frac{\sum_{r_{u,i}\in Test}(r_{u,i}-\widehat{r_{u,i}})^2}{|Test|}$$

· Lots of other possibilities too



- Netflix
 - their CF system, CineMatch, makes recommendations
- The Netflix Prize (<u>www.netflixprize.com</u>), 2006-2009:
 - ratings matrix of "more than 100 million ratings from over 480 thousand randomly-chosen, anonymous customers on nearly 18 thousand movie titles"
 - \$1,000,000 Grand Prize for improving accuracy (as measured by RMSE) by 10%
 - winner was BellKor's Pragmatic Chaos Team, which improved accuracy by 10.06% using an ensemble approach
- Issues
 - finding identities (de-anonymization); lawsuit

- · Most recommenders produce a ranked list
- · Position in the list matters
 - we want recommendations that match the 'ground truth' - but we want these
 - recommendations to come early in the list

 A simple approach - if a successful recommendation comes at position k, then score this success as 1/k

- · We've assumed you average over all predictions - but you might instead compute an average for each user (or item), and then average these
 - whv?
- And we may want to measure accuracy for specific types of item or user
 - new or newish users, with no or few ratings (coldstart)
 - users who are "black sheep" or "grey sheep"
 - new or newish items, with no or few ratings
 - items which are in the long tail

- · I like this experimental method a lot:
 - divide ratings matrix into Train and Test, but Test contains only items users rated 5
 - for each $r_{u,i} \in Test$ randomly select 1000 items not rated by u• predict rating for i and for the 1000 items

 - .
 - rank the 1001 items by their predicted ratings and take the top n (e.g. n = 10)
 - you have a true positive if i is in the top-n, otherwise a false negative
- But note an assumption this method shares with many others
 - that the 1000 items are not relevant to the user
 - it penalises you for predicting them ahead of *i*
- This assumption could be incorrect
 - hence we must recognise that many methods underestimate true accuracy

Discussion: Trade-offs

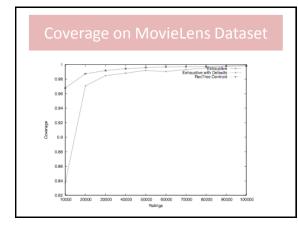
- Improving accuracy may worsen other properties
- Measure other properties of the system
 - but be warned again about fishing trips!

 Properties you might measure in offline experiments

- coverage
- efficiency
- diversity
- novelty
- serendipity
- resilience to attack
 ...

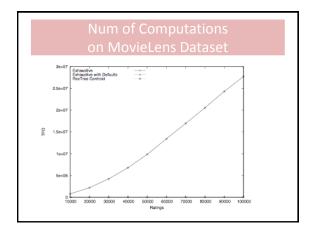
Coverage

- Sometimes a user-based collaborative recommender cannot make a prediction – why?
- Using the same experimental methodology, compute coverage
 - e.g. as the percentage of times the system was able to make a prediction
- An easy way to improve coverage
 resort to some non-personalised recommendation



Time and Space Efficiency

- Using the same methodology, we can compute
 - the average time it takes to make a prediction
 - the average amount of memory used when making a prediction
- Scalability is important too, e.g. compute the average time it takes to make a prediction
 - when the ratings matrix contains, say, 10,000 ratings
 - when the ratings matrix contains, say, 20,000 ratings
 - when the ratings matric contains, say, 30,000 ratings



- Recruit a set of users
 - e.g. a lecturer's students, people off the street, existing users
- Ask them to complete a set • of tasks
 - measure performance quantitatively, e.g. time taken, number of clicks
 - survey them after, and even before & during, for qualitative judgments
- Pro: - can obtain wide range of quantitative and qualitative data
- Con:
- limited in size and scope by expense (time, compensation) • Issues:

 - need pilot studies to spot problems with the experiment the bias of using volunteers (they are your more interested users)
 - the bias from being aware they are in an experiment

Within subjects

· Each subject (user) tests all the candidate systems

Advantages

- can use fewer users in within studies
- can ask users comparative questions in within studies
- apparent superiority of one system could be due to bias in the user split in between studies

Between subjects

- · Each subject tests only one candidate system (assigned to her at random) Advantages
- - users are more conscious of the experiment in within studies
 - order of testing needs to be controlled for in within studies
 - easier to test longer-term effects from repeated system use in between studies

Quantitative metrics

- E.g. you might have ways of varying the diversity of recommendation lists
 - Measure the effects of diversity on
 - time to complete a task - number of clicks to complete a task
 - position in recommended list of item the user clicks on
 - ...

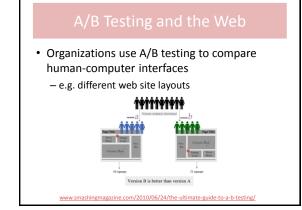
•

Qualitative metrics

- E.g. you might have different explanation facilities
- Survey the users to determine the effect the explanations have on, e.g.:
 - user's likelihood to purchase/consume - user's confidence/trust in the
 - system
 - user satisfaction/enjoyment - ...

- Use real users who are oblivious to the experiment
- A/B testing (= between subjects)
 - randomly assign a small % of users to a variant of the real system and measure whether variant has, e.g., higher sales
- Measure real user behaviour, e.g.
 - logins, clicks, purchases, time spent...

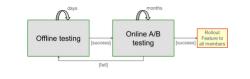
- Pro:
- measures what we really care about: behaviour change, long-term profit, user retention,... • Con:
 - an unsuccessful variant may drive away the users who were assigned to it
- Issues: need enough existing traffic



Netflix

• Netflix is always running experiments

- an approach they call Consumer Data Science
- dozens of A/B experiments running in parallel
- see techblog.netflix.com/2012/06/netflixrecommendations-beyond-5-stars.html



Bing

- Bing runs over 50 concurrent experiments
 - in a visit, you're in about 10 experiments
 - there is no single Bing
 - e.g. Ron Kohavi's talk:
 robotics.stanford.edu/~ronnyk/2012-09ACMRecSysNR.pdf
- The same is true of Google, Amazon,...