
31/01/2014

1

CS6120:
Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology

UCC

Content-Based Recommenders

• Content-based recommenders require
descriptions

• Item descriptions
– assume, for now, each description is just a set of

keywords or terms
– e.g. for movies: genre (action, comedy,…) but maybe

actor and director names, maybe words that describe
the plot

– other terminology: tags, metadata

• User profile
– also a set of keywords or terms that describe a user’s

tastes

Item Descriptions

• Tagging an item

– means describing it using a
set of terms

• Experts using a controlled
vocabulary
– a fixed, agreed set of terms

– e.g. Pandora’s Music
Genome Project

– e.g. Netflix employs 40
people to hand-tag TV
shows and movies

New York Time’s article: The Song Decoders

http://www.nytimes.com/2009/10/18/magazine/18Pandora-t.html

31/01/2014

2

Item Descriptions

• End-users using an
open vocabulary

– e.g. flickr, last.fm,…

• Why will they do this?

– to organize their
collection

– to make it amenable for
search

– self-expression,…

• But can be very noisy

User Profiles

• Explicit

– ask user to supply
keywords when s/he
registers

• Implicit

– add keywords to user
profile from item
descriptions of items in
which s/he shows an
interest

Similarity

• The similarity of set of terms 𝐴 and set of terms 𝐵
– e.g. A = a user profile and B = an item description
– e.g. A = an item description and B = another item

description

• Can be based on the size of their intersection:
𝐴 ∩ 𝐵

• But this gives bigger sets a greater chance of higher
similarity

• Better is Jaccard similarity, which normalizes by the
size of the union:

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵

31/01/2014

3

Example

• How similar are

– Skyfall and Casino Royale?

– Tinker, Tailor and Batman Begins?

Title Director … Terms

Skyfall Mendes … spy, action, train, revenge, violence

Pulp Fiction Tarantino … boxer, violence, restaurant, dancing

Tinker, Tailor... Alfredson … intelligence, spy, identity, mole

Casino Royale Campbell … terrorism, spy, violence, banker

Batman Begins Nolan … revenge, butler, identity

Term Vectors

• We can instead represent the sets as binary vectors
• Each position corresponds to one of the terms
• E.g.

• Compute Jaccard similarity efficiently using vector operations

𝐴 ⋅ 𝐵

𝐴 2 + 𝐵 2 − 𝐴 ⋅ 𝐵

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

Skyfall 1 0 0 0 0 0 0 0 0 1 1 0 1 1

Pulp Fiction 0 0 1 0 1 0 0 0 1 0 0 0 0 1

Two Kinds of Prediction

• In AI/ Machine Learning/
Data Mining

– Classification
• predict one of a small, finite

set of labels

• in our case, “like”, “dislike”

– Regression
• predict a number

• in our case, e.g., 1-5

classifier

regression
system

31/01/2014

4

It’s Time to Build a Recommender!

• So, we have

– item descriptions

– user profiles

– a way of measuring similarity

– a set of candidate items

• For each candidate item, the recommender
must make a prediction

A classifier

for each candidate item, 𝑖

compute 𝑠𝑖𝑚(𝑖, 𝑢), similarity between item
description and user profile

if 𝑠𝑖𝑚 𝑖, 𝑢 ≥ 𝜃

predict “like” for item 𝑖

else

predict “dislike” for item 𝑖

recommend the candidates for which the
prediction is “like” in descending order of
similarity

Example

Title Director … Terms

Skyfall Mendes … spy, action, train, revenge, violence

Pulp Fiction Tarantino … boxer, violence, restaurant, dancing

Tinker, Tailor... Alfredson … intelligence, spy, identity, mole

Casino Royale Campbell … terrorism, spy, violence, banker

Batman Begins Nolan … revenge, butler, identity

User Terms

Ann spy, action, violence, identity

𝒔𝒊𝒎

3/6

1/7

2/6

2/6

1/6

• If 𝜃 = 1/3,
– recommend “Skyfall”, “Tinker, Tailor,…” and “Casino

Royale”
• in that order

like?

like

dislike

like

like

dislike

31/01/2014

5

Lifting the Burden

Problems

• Item descriptions
– expert tagging is expensive

– end-user tagging is ‘uneven’

• User profiles
– explicit construction on

registration is inconvenient
and gives profiles that are
static

Solutions

• Item descriptions
– extract terms from, e.g.:

• book or movie plot synopsis

• review of a restaurant,…

• the text itself of web pages,
news stories,…

• User profiles
– use terms from items s/he

likes

Term Frequency Vectors

• Suppose we’re extracting the terms from a
‘document’

• Instead of 0/1, we can use numeric weights that
reflect the importance of a keyword

• Simplest is term frequency, 𝑡𝑓𝑡
– how often term 𝑡 appears in the document

• E.g.

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1

Problem with Term Frequency

• Problem

– some words will be frequent but not important

– e.g. in a plot synopsis for a film “man”, “woman”,…

– one sign of this is that they occur in many of the
documents

31/01/2014

6

Inverse Document Frequency

• Let 𝑑𝑓𝑡 be the document frequency of term 𝑡

– how many documents 𝑡 occurs in

• The importance of 𝑡 is inversely related to 𝑑𝑓𝑡

• The inverse document frequency of 𝑡 is given
by

 𝑖𝑑𝑓𝑡 =
𝑁

1+ 𝑑𝑓𝑡

 where 𝑁 is the total number of documents

TF-IDF

• So the weights we use in our term vectors are
based on combining

– term frequency (i.e. within the document)

– inverse document frequency (i.e. across
documents)

𝑡𝑓𝑖𝑑𝑓𝑡 = 𝑡𝑓𝑡 × 𝑖𝑑𝑓𝑡

TFIDF: niceties

• There are numerous variations

– sublinear 𝑡𝑓 scaling

– maximum 𝑡𝑓 normalization

– log scaling of 𝑖𝑑𝑓

– cosine normalization or pivot normalization

• And we use Cosine Similarity
𝐴 ⋅ 𝐵

𝐴 × 𝐵

31/01/2014

7

Vector Space Model

love

sh
o

o
t

Pulp Fiction

Django Unchained

Pride & Prejudice

Ann

Problem

• The vectors can be very long

• Solutions:
– Preprocessing

• ignore stop words
– e.g. “a”, “an”, “the”, “in”,…

– e.g. the list used by SQL

• stem
– e.g. “laughs”, “laughing”, “laughed” → “laugh”

– e.g. the Porter Stemming Algorithm

– Postprocessing
• keep only the most discriminating terms

More Problems

• This representation loses relationships between
words in the text, e.g. their order, contiguity
– E.g. the following are regarded as similar

• “The secret agent jumps from the moving train…”
• “The bride’s secret conversation with her travel agent…”

• Ambiguity may lead to false matches
– e.g. different documents might be using different

meanings of “bank”, “train”, “fire”

• Synonymy may lead to missed matches
– e.g one document might use “spying”; another might

use “espionage”

http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/

31/01/2014

8

More Problems

• Lack of domain knowledge may lead to missed
matches
– e.g. one document might discuss “impressionism”

another discusses “Claude Monet”

• The semantics (meaning) is not being captured
– E.g. consider this review of a steak house

• “There is nothing on the menu to suit a vegetarian…”

 with these two
• “This is a meat-lover’s paradise…”
• “The vegetarian options are superb…”

– Which is the more similar?

The Same Recommender

for each candidate item, 𝑖

compute 𝑠𝑖𝑚(𝑖, 𝑢), similarity between item
description and user profile

if 𝑠𝑖𝑚 𝑖, 𝑢 ≥ 𝜃

predict “like” for item 𝑖

else

predict “dislike” for item 𝑖

recommend the candidates for which the
prediction is “like” in descending order of
similarity

It’s dynamic!

• One nice characteristic

– user profile is not static:

• each time s/he shows interest in an item, that item’s
terms are used to update the user profile

– e.g. after she watches Skyfall (or gives it a high
rating), we update her profile using Skyfall’s term
vector

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1

31/01/2014

9

Problem

• Ben likes nature
documentaries

• He likes war
movies

• But he doesn’t
like war
documentaries

• But his profile will have
high tfidf scores for
nature, documentary
and war

– from nature
documentaries and war
movies that he liked

• So a war documentary
will be similar and may
be recommended

Solution

• Instead of a single
vector, which mashes
together terms from all
items s/he likes…

• …let the profile be a set
of vectors, one for each
item, along with her/his
rating of the item

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

R
A

TI
N

G

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2

• E.g. if Clare likes Skyfall (4 stars) and Pulp Fiction (5
stars) but not Batman Begins (2 stars):

Regression using Nearest Neighbour

for each candidate item, 𝑖

for each item in the user’s profile, 𝑗

 compute 𝑠𝑖𝑚 𝑖, 𝑗

let 𝑗∗ be the nearest neighbour, i.e. the item in the
 profile that is most similar to 𝑖

let the predicted rating for item 𝑖 be 𝑗∗’s rating

recommend the candidates in descending order
of predicted rating

31/01/2014

10

Example
• Suppose this is Clare’s profile:

• Suppose the first candidate item is:

• Casino Royale is the nearest neighbour
– Clare’s rating for Casino Royale is 5
– So the predicted rating for Goldeneye is also 5

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

R
A

TI
N

G

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2

Goldeneye 3 1 0 0 0 0 2 0 0 2 4 3 1 2

sim

0.75

0.06

0.89

0.16

Example
• Suppose this is Clare’s profile:

• Suppose the second candidate item is:

• Batman Begins is the nearest neighbour
– Clare’s rating for Batman Begins is 2
– So the predicted rating for Spiderman is also 2

Spiderman 2 0 0 0 0 3 0 0 1 1 0 1 1 1

sim

0.30

0.15

0.33

0.40

a
ct

io
n

b
a

n
ke

r

b
o

xe
r

b
u

tl
e

r

d
a

n
ci

n
g

id
e

n
ti

ty

in
te

ll
ig

e
n

ce

m
o

le

re
st

a
u

ra
n

t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
a

in

vi
o

le
n

ce

R
A

T
IN

G

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2

Example

• Of these two candidates, we recommend
1. Casino Royale (predicted rating: 5 stars)
2. Spiderman (predicted rating: 2 stars)

• Of course, in reality, with more candidates, we
could recommend
– just the top few, or
– only those whose predicted rating > 3

• But, the predictions are based on just the nearest
neighbour
– can often improve accuracy by using several

neighbours

31/01/2014

11

Regression using k-Nearest Neighbours

for each candidate item, 𝑖
for each item in the user’s profile, 𝑗

 compute 𝑠𝑖𝑚 𝑖, 𝑗

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘
 items in the profile that are most similar to 𝑖

let the predicted rating for item 𝑖 be the average of
 the ratings in 𝑁𝑁

recommend the candidates in descending order
of predicted rating

Example with 𝑘 = 3
• Suppose this is Clare’s profile:

• Suppose the first candidate item is:

• The 3-nearest neighbours are Casino Royale, Skyfall, Batman Begins
– Their ratings are 5, 4, and 2
– So the predicted rating for Goldeneye is (5 + 4 + 2) 3 = 3.67

a
ct

io
n

b
a

n
ke

r

b
o

xe
r

b
u

tl
e

r

d
a

n
ci

n
g

id
e

n
ti

ty

in
te

ll
ig

e
n

ce

m
o

le

re
st

a
u

ra
n

t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
a

in

vi
o

le
n

ce

R
A

T
IN

G

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2

Goldeneye 3 1 0 0 0 0 2 0 0 2 4 3 1 2

sim

0.75

0.06

0.89

0.16

Example with 𝑘 = 3
• Suppose this is Clare’s profile:

• Suppose the second candidate item is:

• The 3-nearest neighbours are Batman Begins, Casino Royale, Skyfall
– Their ratings are 2, 5, and 4
– So the predicted rating for Spiderman is (2 + 5 + 4) 3 = 3.67

Spiderman 2 0 0 0 0 3 0 0 1 1 0 1 1 1

sim

0.30

0.15

0.33

0.40

ac
ti

o
n

b
an

ke
r

b
o

xe
r

b
u

tl
er

d
an

ci
n

g

id
en

ti
ty

in
te

lli
ge

n
ce

m
o

le

re
st

au
ra

n
t

re
ve

n
ge

sp
y

te
rr

o
ri

sm

tr
ai

n

vi
o

le
n

ce

R
A

TI
N

G

Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2

31/01/2014

12

Example

• Using more than one neighbour is a good idea

• But here, we have ended up with the same
predicted rating for both candidates:

1. Casino Royale (predicted rating: 3.67 stars)

2. Spiderman (predicted rating: 3.67 stars)

• The fix is to use a weighted average

– weighted by similarity

predicted rating for j =
 𝑠𝑖𝑚 𝑖, 𝑗 × rating for 𝑖𝑖∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑖∈𝑁𝑁

Regression using k-Nearest Neighbours

for each candidate item, 𝑖
for each item in the user’s profile, 𝑗

 compute 𝑠𝑖𝑚 𝑖, 𝑗

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘
 items in the profile that are most similar to 𝑖

let the predicted rating for item 𝑖 be the weighted
 average of the ratings in 𝑁𝑁

recommend the candidates in descending order
of predicted rating

Example

• Goldeneye’s 3-nearest
neighbours:

• The predicted rating is

• Spiderman’s 3-nearest
neighbours:

• The predicted rating is

R
A

TI
N

G

Skyfall 4

Casino Royale 5

Batman Begins 2

sim

0.75

0.89

0.16

0.89 × 5 + 0.75 × 4 + 0.16 × 2

0.89 + 0.75 + 0.16
= 4.3

R
A

TI
N

G

Skyfall 4

Casino Royale 5

Batman Begins 2

sim

0.30

0.33

0.40

0.40 × 2 + 0.33 × 5 + 0.30 × 4

0.40 + 0.33 + 0.30
= 3.5

31/01/2014

13

Discussion

• Content-based
recommenders need
item descriptions

• And the descriptions
need to be predictive of
people’s tastes

• Where this works:

– e.g. new stories, web
pages

• Where this is more
problematic

– books, movies, music,
pieces of art,…

– is a plot synopsis
predictive?

– are reviews predictive?

Discussion

New items

• When a new item becomes
available

– it can be recommended

immediately

– we don’t have to wait for
people to rate it

– contrast with collaborative
recommenders (the cold-start
problem)

New users

• When a new user joins,
– no recommendations can be

made to him/her until s/he
has built a user profile

• either supplying keywords
when s/he registers

• or rating some items when
s/he registers

• or rating items while using
the system

– similar to collaborative
recommenders

Discussion

• Content-based
recommenders tend not
to extend our tastes

– they recommend items
similar to ones in our
profile

– generally, no
serendipitous
recommendations

