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Key Ideas...

• Information Access Modalities

• Navigation, Search, Recommendation

• Interactions & Feedback

• Mining users interactions rather than item content. 

• Profiling & Privacy

• The Economics of Personalization

Information Access Modalities
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Lessons learned along the way ...

• Understand user problems to identify application sweetspots.

• Exploit domain constraints. Keep it simple. Build for scale.

• Learn from live-user trials to understand real benefits.



The Case for Personalization

• Information Overload

• Device Variability 

• PC, Mobile, TV, ...

• Interactions ⇒ Adaptation

• Profiling & Privacy

• Individuals / sessions / communities

• The Economics of Personalization

• Benefits & Costs

The Road to Personalization

• Personalization | Browsing

• Menu adaptation in mobile portals; Large-scale, profiling and navigation 
prediction

• Personalization | Recommendation

• Targeted feedback in conversational recommendation; In-session adaptation & 
mining compound critiques

• Personalization | Search

• Exploiting query repetition and selection regularity in Web search; Community-
based profiling for anonymous personalization

 user profiles 

 session profiles 

 community profiles 

1. Personalization | Browsing

Adapting the Structure of Mobile Portals to the Navigation Patterns of Users

Browsing on the Mobile Internet
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Movie Times
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Browsing on the Mobile Internet
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The Click-Distance Problem
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Portals

Mobile portals are compromised by large click-distances that render up 
to 75% of content all but invisible to the most determined of users.

C
D

 <
 6

C
D

 <
 1

2

High-Volume UsageKEY:

Regular Usage

Home Content

Mining Navigation Trails
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Navigation Profile

Recording user navigation trails provides 
a basis for profiling ... 

... which in turn can be used as the 
basis for a probabilistic navigation 
model.

P(F|A)=P(C|A)•P(F|C) 

      =(30/40)•(20/30) 

      =0.5

Link Reordering & Promotion

Menu Construction

Each personalized version of a requested 
menu, m, is constructed by adding the k most 

probable options, which are descendants of m. 

By default all of m ‘s options are then ordered 
according to their access probabilities.

Mobile Home

Reordering ...
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Link Reordering & Promotion

• Scalability Issues [Smyth & Cotter, AH 2002]

• Depth-limited, breadth-first search 
for real-time promotion and reordering.

• Mobile OpCo requirements: approx. 1000 personalized pages per 
second with a latency of <500msec.

P(o|m) ! P(o’|m’) 
   if o’! m’ and Descendant(m’,m)

Expand o’ iff P(o’|m) > kth best 
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Deployment Architecture

Evaluation

8 weeks

BASELINE TRIAL

8 weeks

Analysis Period

Trial opt-in page for all 66/67 
users at portal home page.

 ~800 unique GPRS trialists
 (~80,000 full subscriber base)
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Active Users
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Lessons Learned

• Selling AI ...Return on Investment is key!

• Usability " Click-Distance " Usage

• The “AI Blackbox” vs the need for operator controls.

• Integrated portal management and personalization administration.

• Personalization changes the way that operators manage their portals!

• User perceptions & the personalization-privacy trade-off

• Satisfaction, usage, bandwidth, privacy, 90%+ opt-in rates.

• See also: [Smyth et al. IAAI 2007, AI Magazine (forthcoming)]

2. Personalization | Recommendation

Mining Feedback in Conversational Recommender Systems 



Recommender Systems (Single-Shot)

Profile ItemsR

Conversational Recommender Systems
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Critiquing-Based Recommenders

“Show me more like this but cheaper” 
(Unit critique over the price feature)

Recommend(c,f):-

  1. Filter remaining cases by critique, f.

  2. Rank filtered cases by similarity to, c.

  3. Return top k (k=1) most similar cases.

The Problem with (Unit) Critiques ...

• Session Analysis

• Protracted sessions in simple product-spaces.

• False-leads.

• Changes of mind.

• Dynamic Critiquing

• Unit ⇒ Compound Critiques

• Incremental Critiquing

• How to adapt recommendations in response to new and changing 
preferences?
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A Dynamic Compound Critique Recommender
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Dynamic Critiquing: Creating Compound Critiques

Generate compound critiques on-the-fly by using data mining 
techniques to extract common patterns of critiques from the remaining 
cases (relative to the current recommendation)
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Each remaining case is converted in to a critique pattern to reflect the 
differences between it and the current recommendation....
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Ranking & Selecting Compound Critiques

• Use Apriori to produce compound critiques (for the current cycle) 
containing 2-3 unit critiques

• Large lists of candidates (50+/cycle in typical scenarios)

• Ranking based on support and confidence thresholds

• Low-support critiques shown to provide best balance of filtering power 
and likely applicability ⇒ Best-k (k=3) compound critiques to present

• See also: 

1. Comparison of ranking strategies (Reilly et al, ECCBR 2004)

2. MAUT critique mining (Zhang & Pu, AH 2006; Reilly, Zhang et al, IUI’07)

Incremental Critiquing

[Price < 995]
[Memory < 512]
[Resolution < 6.2]

[Price < 995]
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U
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[Manufacturer " Sony]
[Resolution < 5]

[Price < 405]

[Manufacturer ! Sony]

[Memory < 512]
[Resolution < 5]

Incremental Critiquing

• Incremental critiquing constructs an in-session user model, U, 

from the critiques provided by the user during each cycle.

• Sometimes critiques are inconsistent with previous critiques 
stored in U

• Contraditory critiques -  [Price > !750] vs. [Price < !500]

• Complementary critiques - [Resolution > 5M] vs. [Resolution > 6.2M]

• The user model is maintained by a “newer is better” strategy in 
which more recent critiques over-ride past critiques.

Incremental Critiquing

• Recommending a new case ...

• Incremental critiquing considers the user’s critique history (U) during 
recommendation.

• Each candidate case c’ is ranked according to its similarity to c (the 
current case) and its compatibility with U.

• Candidates are preferred if they are similar to c and if they satisfy many 
of the users past critiques.

Compatibility(c’,U) =
!!i satisfies(Ui,c’)

U

Quality(c,c’,U) = Compatibility(c’,U) * Similarity(c,c’)



Evaluation

• E-Commerce Scenario

• Online digital camera store

• 200+ cameras

• Trial Setup

• 76 participants were asked to use the
online store to ‘shop’ for a digital camera of their choice.

• Low vs high freq. use of compound critiques (0"100%, median " 20%)

• Systems Compared

• Standard vs Incremental Critiquing x Unit vs Compound Critiques

 Standard Critiquing

Incremental Critiquing User Satisfaction



Lessons Learned

• Critiquing is an effective form of feedback, but unit critiques can lead to 
protracted sessions (false-leads, dead-ends etc.)

• Dynamic, compound critiques offer a richer form of feedback.

• Incremental critiquing facilitates a more natural form of product exploration 
that adapts to the in-session behaviour of the current user.

• Significant benefits in session length without compromising user satisfaction.

• No persistent profiles ⇒ Limited privacy implications.

3. Personalization | Search

Harnessing Community Expertise in Collaborative Web Search

Collaborative Web Search

• Observations on Web Search ...

• Vague queries and the vocabulary gap.

• Repetition & regularity in communities of like-minded searchers.

• Query profiling is a privacy nightmare!

• Community-based personalization

• Leverage existing search engine resources.

• A Case-Based Reasoning Perspective.

- Reuse of search cases  ⇒ search expertise ⇒ community promotions

• No need for individual search profiles. 

The Challenges of Web Search

• Vague Queries

• Jaguar, Jaguar, Jaguar, ....

• Query Vocabulary # Indexing Vocabulary (The Vocabulary Gap)

• Generic Search vs Community-Based Search

• Communities are commonplace on the modern Web (ad hoc, formal, ...)

• Communities often search for similar things in similar ways

• Query repetition and selection regularity is commonplace within 
communities or like-minded searchers.



Vague Queries The Vocabulary Gap

Generic vs Community-Based Search

• Generic search engines (Google, Yahoo, Ask,...) appear to 
dominate the world of Web search ....

• ... but many search sessions reflect the niche interests of 
communities of like-minded individuals

• ... and there are increasingly many examples of searchers 
searching in a community context.

• Students searching for information about a particularor term-paper;

• Related employees searching for work related materials;

• Visitors to a themed web site availing of syndicated search services.

• ...

Repetition & Regularity in Web Search



Collaborative Web Search Architecture
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A Case-Based Reasoning Perspective

• Hit-Matrix " Case-Base

• Cases capture community 
search experiences as a 
query and a set of selections.

• Query Reuse " Case 
Retrieval

• Select search cases for similar 
queries.

[Smyth et al., JIR 2006, UMUAI 2004]

A Case-Based Reasoning Perspective

• Promotion " Case Reuse

• Most relevant selections are 
promoted within the result-list.

• Result relevance based on query 
relevance and query similarity.
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= (21/89)*1+(33/43)*1/2+(5/44)*1/3
   
= 0.64

(1 + 1/2 + 1/3)
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Evaluation

• Enterprise Search Scenario [Coyle & Smyth, ACM TOIT, IEEE Computer 2007]

• Community composed of the employees of a local software company; 
search redirected through CWS-enhanced Google.

• Approx. 70 employees over a 10 week period > 12,600 individual search 
sessions

• Methodology

• Promoted vs. Standard Sessions

• Successful vs. Failed Sessions

• Promotion Sources (Self vs. Peer)

Repetition & Regularity in Web Search

Average Success Rates Sources of Promotions



85% of participants became actively involved in the 
creation and consumption of search knowledge.

20% of participants acted as search leaders, being 
frequently first to contribute search knowledge on a 

particular topic.

20% of participants acted as search followers, 
primarily consuming search knowledge created by 

others.

Lessons Learned

• Many Web search scenarios have a community context.

• Communities of like-minded searchers search for similarity 
information in similar ways.

• Community search histories can be harnessed as a source of 
search expertise and used to enhance standard search results.

• Aggregating community search experiences facilitates a form of 
anonymous, personalized Web search.

Further Work...

• Beyond click-thru mining [Boydell & Smyth, IUI 2007, SIGIR 2006]

• Snippet-based Collaborative Web Search

• Generating community-focused result summaries

• Click-spam and trust-based filtering [Briggs & Smyth, AIR, IUI, ECIR 2007]

• Malicious users ⇒ forced promotion

• Towards Inter-Community Web Search [Freyne & Smyth, AH,ECCBR 2006]

• Sharing result promotions between related search communities.

• Community experrise " folksonomy learning



Conclusions

• Personalized Information Access

• Navigation, Recommendation, Search

• Profiling strategies (sessions, individuals, communities)

• Privacy and the Economics of Personalization

• Trading privacy for features ...

• Mobile subscriber take-up; Recent FaceBook/MySpace studies

•  Next Steps ...

• Social information access - integrating navigation, search and 
recommendation [Farzan, Coyle, et al, IUI, Hypertext 2007]

• ...
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