= The following problems remain, irrespective of
whether we use filter-based, similarity-based,
utility-based or diversity-enhanced retrieval:

Lecture 7:

Conversational Recommender
SYSTemS for' E-Commerce = seldom are we satisfied with the initial set of results

= seldom are we able to specify all our requirements up-front

= We've been assuming a single-shot system
= submit query, view results, end of story
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= If not satisfied, our only option is to revise the
query and submit again

= typically with no guidance!
= can lead to 'stonewalling’

= A conversational recommender system

= Single-shot systems: independent queries
= an iterative approach

= we assumed the user could supply his/her requirements up-
= users can elaborate their requirements as part of an front

extended recommendation dialog = e.g. value-elicitation by form-filling

= Conversational systems: a dialog
= Navigation-by-asking
= recommender selects and asks questions
= value-elicitation: user may answer the questions
= Navigation-by-proposing
= recommender makes interim recommendations
= user provides feedback on these recommendations (e.g. critiques)



Navigation-by-asking: desiderata Navigation-by-asking

= Questions should be few in number = Let's focus on minimizing the number of questions
* Questions should have a comprehensible * Statically-defined dialog
ordering/grouping « will not minimize the number of questions since next
question is fixed 2 insensitive to user's answers to previous

questions

Each question should be comprehensible
= Dynamically-defined dialog

= next question is chosen based on an analysis of the
distribution of remaining candidate items

Each question should have low answering cost

= For simplicity, let's assume filter-based retrieval
= i.e. exact-matching

Check your intuitions Check your intuitions, continued

= Suppose these are the candidate items: = We'll suppose the user gives us an answer to our first
question. In the lecture, delete parts of the table that are no

Id Colour Size Weight longer relevant:
1 red small light
2 red small light Id Colour Size Weight
3 red large heavy 1 red small light
4 blue small heavy 2 red small light
5 blue small heavy 3 red large heavy
6 red small light 4 blue small heavy
7 red small light 5 blue small heavy
8 blue small heavy 6 red small light
9 blue large heavy 7 red small light
10 blue large medium 8 blue small heavy
9 blue large heavy
= You can ask ‘the user to supply a preferred colour or a 10 blue large medium
preferred size or a preferred weight.

Which would you ask first? * What would you ask next?



Information gain

= Let C be the remaining candidate items = Let's compute, Gain(Colour):

= Suppose attribute A has a set of possible values, V
= e.g. for A = Colour, V = {red, blue}

Worked example

= Let C,., be those members of C for which A = v

= The information gain for an attribute A, Gain(A):

Gain(A) ==

size(Ca) | 1o (size(CA_v))
VeV size(C) size(C)

= Log? Should be log, but you can use the button on your , size(C,_,) size(C,_,)
calculator labeled log, which is log;, This will not change the G”’"(A)='Evev size(C) X1 ( size(C) )
outcome here

Information gain Question

= Compute Gain(Size) and Gain(Weight) in your own = Consider our rental property example
time

= The attributes are
= But here are the answers, so that you can check

yours against mine:

= Gain(Colour) = 0.3 Our definition of Gain is probably not suitable for

* Gain(Size) = 0.14 all these attributes
- Gain(Weight) = 0.41

= Type, Rent, Bdrms, Bthrms, Furnished, Location

Where does the problem lie?

= How might we fix it?



Let Candidates be the entire product catalog

Repeat the following until Candidates is small enough
to display on the screen or all candidates have the
same values for all attributes

Compute the information gain of each unasked attribute
Choose the attribute with highest information gain
Ask the user for his/her preferred value for this attribute

Remove from Candidates all products which do not have this
value for this attribute

Asking the user questions, whether up-front (e.g.
form-filling) or incrementally (navigation-by-asking)
still requires that s/he

knows his/her own mind

is able to articulate his/her preferences

On the other hand, if we show the user one or more
items (interim recommendations), s/he may more
easily be able to say

what s/he likes about them
what s/he dislikes about them

Our treatment assumes filter-based retrieval

however, a variation has been defined that works for
similarity-based/utility-based retrieval

S.Schmitt (2002): simVar: A similarity-influenced
question-selection criterion for e-sales dialog, Artificial
Intelligence Review, vol.18(304), pp.195-221

We have only considered minimizing dialog length

it easy to incorporate question costs, if they are known (which
they rarely are)

comprehensible ordering/grouping might be achievable by
incorporating a similarity measure between questions

if users have the option of declining to answer a question, we
have the opportunity to learn answering preferences in order to
personalize dialogs

Critiquing is one form of navigation-by-proposing

How it works (roughly)
the system shows the user an item

the user supplies a critique of the item (e.g. “cheaper”,
“more bedrooms”,..)

the system retrieves all items that satisfy the critique

of these items, it shows the user the one that is most
similar to the one being critiqued

This captures the idea of “like this but..”



Entrée: restaurant recommender Worked example

!‘ ? e Address Type  Bdrms Bthrms Rent  Furnished Location
W 5

1 16 Oxford Road Flat 1 1 265 Yes Acton
er
Tania's () 2 | 2 Heathfield Road | House |3 2 370 Yes Acton
2659 N. Milwaukee Ave. (bet. Kedzie & Kimball Aves.), Chicago, 312-235-7120
— | ) 101 d |F 2 1 271 B
Tl D, o Sl ol o, e, I, T s b, Lt o Wy, e T 0, 3 | 101 Nassau Roa Flat 7 No arnes
Parking/Valet
4 | 78 Moscow Road Flat 3 1 850 Yes Bayswater

Worked example Worked example

= Suppose the system shows the user the following = Since the item has Rent = 370, the user's critique

item: can be expressed as Rent < 370

ITem

Address Type Bdrms Bthrms Rent  Furnished Location - The sysTem fiﬂds 0“ ”ems 1'h01' sa1'isfy The cr‘iﬁque
2 | 2 Heathfield Road | House |3 2 370 Yes Acton " SELECT * FROM Properties WHERE Rent < 370;
Address Type Bdrms = Bthrms Rent  Furnished Location

= The user selects the “"cheaper” critique |16 OxfordRoad | Flat |1 1 265 | Yes Acton
= So s/he wants to see items that are 3 | 101 Nassau Road Flat 2 1 271 No Barnes

= "like the second item but cheaper”
= Call these the Candidates



Worked example

Worked example

= For each candidate item 7/, compute sim(s, i) where s

is the selected item = Show the user the highest scoring item:

Type = Bdrms Bthrms Rent  Furnished Location
2 2 Heathfield Road | House |3 2 370 Yes Acton
1 16 Oxford Road Flat 1 1 265 Yes Acton

1 16 Oxford Road Flat 1 1 265 Yes Acton

sim(id2, id1) =2:| 0 0.25 0.875 [0.838 |1 1 - “like ThIS bl.l"' cheaper"'
2 2 Heathfield Road | House |3 2 370 Yes Acton
3 101 Nassau Road Flat 2 1 271 No Barnes

sim(id2, id3) =:| 0 0875 [0875 |0.848 |0 0.6

sim(id2, idl) = 3.963 sim(id2, id3) = 3.198

Critiquing: variation Entry points
= This variant might give a more efficient dialog: * But what item(s) do you start with?
= The system shows the user k items (k > 1, e.g. k = 3) * Named entry:
= The user selects one of the items, the one that comes = user picks an item s/he knows about

closest to what s/he wants
= Search entry:

= The user supplies a critique of the selected item o . . .
= user fills in a form with some initial requirements

= The system retrieves all items that satisfy the critique

= Of these items, the system shows the user the k that are " Prototype entry:
most similar to the one being critiqued = system selects a diverse set of k items from the product catalog
= (Another variant: use Bounded Greedy Selection. Why?) - Navigation-by-asking entry:
= the ExpertClerk system, H. Shimazu (2002): ExpertClerk: A
Conversational Case-Based Reasoning Tool for Developing

Salesclerk Agents in E-Commerce Webshops, Artificial Intelligence
Review, vol.18(3-4), pp.223-244



If a critique is unsatisfiable, it ought to be disabled
so the user cannot select it

Critiquing involves filter-based retrieval, then
similarity-based retrieval (possibly diversity-
enhanced). Is it right to use filter-based retrieval?

If the product space is dense, critiques may result
in only slow change and differences that are not
perceived as significant

on the other hand, attempts to remedy this may make it
impossible to reach some items

No one knows whether critiques should cumulate

In both navigation-by-answering and navigation-by-
proposing
the user has to have quite a lot of knowledge/understanding

When input modalilities are more limited (e.g.
handheld devices), critiquing and navigation-by-
asking may impose an unreasonable burden

there are other forms of navigation-by-proposing requiring
less user input

In both navigation-by-answering and navigation-by-
proposing
there has been a fixation with minimizing dialog length

Why might this be wrong? In other words, why might a
user prefer a longer dialog than is strictly necessary?

Designers have to anticipate the critiques to offer

Some critiques may not be expressible in terms of
individual attributes

especially lifestyle characteristics

Should we offer ‘compound critiques’, which change
more than one attribute at a time?

might help the user to see trade-offs

does it solve the problem above?

but which ‘compound critiques’ should we offer

too many possible compound critiques to show them all
maybe the system can select the most useful ones dynamically?



