
Lecture 6:
Recommender Systems
for E-Commerce

Derek Bridge

2003 © ChangingWorlds Ltd.

Motivation

! The recommender systems we have looked at
so far

! maintain a profile of the user’s long-term
interests, either

! content-based or
! collaborative

! can be used either

! reactively: user requests a recommendation (“user pull”)
! proactively: system makes recommendations unbidden

(“system push”)

! but cannot (easily) respond to the user’s short-
term goals and interests

2003 © ChangingWorlds Ltd.

Motivation

! We’ll look at short-term goals and interests in the context of
a user accessing an online product catalog

! The user will reveal his/her constraints and preferences in the
form of a query (or sequence of queries)

! Products in the catalog will have descriptions

! these will tend to be structured descriptions

! The recommender system will be primarily

! content-based: matches the query against the product
descriptions

! reactive: makes recommendations on request

2003 © ChangingWorlds Ltd.

Running example

Barnes

Acton

Acton

Location

No

Yes

Yes

Furnished

271

370

265

Rent

12Flat101 Nassau Road3

23House2 Heathfield Road2

11Flat16 Oxford Road1

BthrmsBdrmsTypeAddressId

2003 © ChangingWorlds Ltd.

Eliciting the query: forms

! User can express constraints by submitting a form

! fields can be left blank to indicate ‘wild card’

2003 © ChangingWorlds Ltd.

Retrieval

! The query values are used to build an SQL query

! executed against the database

! its results are shown to the user

200Rent:

2Bdrms:

DatabaseRecommender

Query

Recommendations

SELECT * FROM Properties

WHERE Bdrms = 2

AND Rent = 200;

2003 © ChangingWorlds Ltd.

Filter-based retrieval

! Typically, SQL will be used to perform filter-based retrieval

! exact-matching

! This brings two problems

! result set may be empty: query is over-specified

! result set may be too long: query is under-specified

! Some systems will attempt to lessen the first of these
problems, e.g.

! User’s query: Rent = 200

! SQL: SELECT * FROM Properties
 WHERE Rent > 190 AND Rent < 210

! But this has at least two weaknesses! What are they?

2003 © ChangingWorlds Ltd.

Similarity-based retrieval

! An alternative is similarity-based retrieval:

! score each item (based on similarity to the query)

! rank them on their scores

! recommend those at the top of the ranking

! In this case,

! result set is never empty (no matter how under-specified
the query is)

! result set can be a manageable length, and in any case is
ordered

2003 © ChangingWorlds Ltd.

Similarity, sim(q, i)

! A global similarity function, sim(q, i), is defined as
a combination of local similarity functions, simA(q, i),
one per attribute (column) in the query

Acton

Location

Yes

Furnished

265

Rent

11Flat16 Oxford Road1

BthrmsBdrmsTypeAddressId

HayesNo2003Flat

simlocationsimfurnishedsimpricesimbthrmsimbdrmssimtype

i:

q:

sim(q, i) = !:

2003 © ChangingWorlds Ltd.

Global and local similarities

! E.g. sum the local similarities

! E.g. take a weighted sum

! E.g. can take averages or weighted averages

!

sim(q,i) = simA (q,i)
A"q

#

!

sim(q,i) = wA " simA (q,i)
A#q

$

2003 © ChangingWorlds Ltd.

Local similarity functions

! E.g. one local similarity function is called the
overlap function

! very good for non-numeric attributes, especially ones
with just two values, e.g. Type, Furnished

!

simA (q,i) =1 if q = i

0 otherwise

2003 © ChangingWorlds Ltd.

Local similarity functions

! For numeric attributes, the absolute difference
can form the basis:

! But, attributes with large ranges can overpower
other attributes. So normalize:

! And,this is a distance function but we need a
similarity function so subtract from 1:

!

abs(q " i)

!

abs(q " i)

Amax " Amin

!

simA (q,i) =1"
abs(q " i)

Amax " Amin

2003 © ChangingWorlds Ltd.

! Human experts might define domain-specific
similarity functions, esp. for non-numeric
attributes

! E.g. simlocation(q, i)

Local similarity functions

1Hayes

0.81Ealing

0.50.61Chelsea

0.70.80.21Barnes

0.80.90.30.61Acton

HayesEalingChelseaBarnesActon

2003 © ChangingWorlds Ltd.

! Assuming

! global similarity is the sum of local similarities

! Bdrms has range 0-8

! Rent has range 100-750

what is the global similarity of property number 1 for the query

shown?

Exercise

Acton

Location

Yes

Furnished

265

Rent

11Flat16 Oxford Road1

BthrmsBdrmsTypeAddressId

HayesNo2003Flat

i:

q:

sim(q, i) = !:

2003 © ChangingWorlds Ltd.

Utility-based retreival

! Some people say that what we actually want is
utility-based retrieval

! Items will be scored by their utility

! The scoring functions typically compute a global
utility as the sum, weighted sum, average or
weighted average of local utilities

! E.g. a weighted sum

!

util(q,i) = wA " utilA (q,i)
A#q

$

2003 © ChangingWorlds Ltd.

Utility-based retrieval

! How do we then define local utility?

! Often, we use similarity as a ‘proxy’ for utility

! the more similar the query and the item, the more useful

! In this case, utility-based retrieval and similarity-
based retrieval are just two names for the same
idea!

!

utilA (q,i) = simA (q,i)

2003 © ChangingWorlds Ltd.

Utility-based retrieval

! But utility-based retrieval and similarity-based retrieval are
not always just two names for the same idea

! for some attributes, especially some numeric attributes, local
utility may be defined differently

2003 © ChangingWorlds Ltd.

Local utility function: less-is-better

! For an attribute such as Rent, where the user’s
value q specifies a preferred maximum,

! We’ll graph this

! Rent has range 100-750. The rent for property 1 is
265. What’s the local utility if the user’s preferred
maximum rent is (a) 300, (b) 200?

!

utilA (q,i) = 1 if i " q

= 0.5 #
Amax $ i

Amax $ q
 otherwise

2003 © ChangingWorlds Ltd.

Local utility function: more-is-better

! For an attribute such as Bdrms, where the user’s
value q specifies a preferred minimum,

! We’ll graph this

! Bdrms has range 0-8. Property 1 has 1 bdrm.
What’s the local utility if the user’s preferred
mimimum is (a) 1, (b) 2?

!

utilA (q,i) = 1 if i " q

= 0.5 #
i $ Amin

q $ Amin

 otherwise

2003 © ChangingWorlds Ltd.

! In contrast to filter-based retrieval,
similarity-based retrieval and utility-based retrieval

! compute a score for each item

! typically, a sum of local similarities/utilities, one per attribute in
the query

! typically, for local utility, similarity is used as a proxy - but not
always

! ranks the items in order of descending score

! recommends the top-ranking items

! A surprisingly under-used idea

! but, where used, highly successful

Recap

2003 © ChangingWorlds Ltd.

Hooke & Macdonald

2003 © ChangingWorlds Ltd.

Problem

! When using similarity-based retrieval, the
recommendations may be similar to the user’s query
(and when using utility-based retrieval, the
recommendations may be of high utility)

! …but they tend to be similar to each other as well

! This reduces the chance that one of the
recommendations will satisfy the user

2003 © ChangingWorlds Ltd.

Diversity

! We must endeavour to recommend items that are
similar to the query/have high utility but that are
different from each other

! the result set must be diverse

! this increases the chances that at least one of the
recommended items will satisfy the user

! Diversity is different in nature from
utility/similarity

! utility/similarity is a property of an individual item (with
respect to the query)

! diversity is a property of the result set as a whole

2003 © ChangingWorlds Ltd.

Diversity-enhanced retrieval

! Suppose we want to recommend k items to the user

! The idea in the Bounded Greedy Selection algorithm
is

! To start with a larger set of candidates (b " k candidates)
that are of high utility

! Then to select k of these, one by one, ensuring that each
one we select is of

! high utility

! but also low total similarity to those already selected

2003 © ChangingWorlds Ltd.

Bounded Greedy Selection algorithm

! Candidates = b " k items of highest utility
 (found using utility-based retrieval)

! Result = []

! Do the following k times

! Best = the member i of Candidates for which
 Quality(i, q, Result) is highest

! insert Best into Result

! remove Best from Candidates

! recommend Result

2003 © ChangingWorlds Ltd.

Bounded Greedy Selection algorithm

!

Quality(i,q,Result) = util(q,i) + RelDiversity(i,Result)

!

RelDiversity(i,Result) = 1 if Result is empty

=
(1" sim(i, j))

j#Result
$

size(Result)

2003 © ChangingWorlds Ltd.

Problem

! None of this is personalized!

! Maybe we want the system to use our long-term
profile to ‘fill in the gaps’

! complement explicitly specified preferences with user-
specific default ones from the user’s long-term profile when
otherwise unspecified

2003 © ChangingWorlds Ltd.

Example

! The CASPER online recruitment system

! When a user enters a query, the server returns a set of high
utility job adverts

! Client-side, actions such as saving or replying to job adverts are
interpreted as positive feedback

! These adverts are stored in a long-term profile

! When the user next enters a query,

! the server returns a set of high utility job adverts again
! But also, client-side, they are re-ordered by similarity to the adverts in

the long-term profile

! B.Smyth, K.Bradley & R.Rafter (2002): Personalization
techniques for online recruitment services, Communications of
the ACM, vol.45(5), pp.39-40

2003 © ChangingWorlds Ltd.

Problems

! The following problems remain, irrespective of
whether we use filter-based, similarity-based,
utility-based or diversity-enhanced retrieval:

! seldom are we able to specify all our requirements up-front

! seldom are we satisfied with the initial set of results

! We’ve been assuming a single-shot system

! submit query, view results, end of story

! If not satisfied, our only option is to revise the
query and submit again

! typically with no guidance!

! can lead to ‘stonewalling’

2003 © ChangingWorlds Ltd.

Solution

! A conversational recommender system

! an iterative approach

! users can elaborate their requirements as part of an
extended recommendation dialog

! " next lecture

