Lecture 4: Collaborative Filtering I

Derek Bridge

Motivations

- Why do we want an alternative to content-based approaches?
 - Suppose items do not have readily available descriptions or description fail to capture the subjective experiences of consuming the item
 - e.g. music, video, art, photographs, jokes
 - Content-based approaches rarely make recommendations that extend our tastes
 - we would like *serendipitous* recommendations

Intuitions: sharing opinions

- Ann asks her friends whether she should see the latest Hollywood release
- Ben recommends it
 - but he seems to recommend everything
- Col doesn't think much of it
 - and he has a habit of recommending things Ann likes
- Deb hated it
 - but she hates all Hollywood movies
- •
- Over time, Ann learns whose opinions can be applied to help her determine the quality of items

Intuitions: sharing opinions

- In 'word of mouth' recommendations
 - we take into account how similar the other person's tastes are to our own
 - item descriptions are not needed
- Collaborative filtering (CF): evaluating items using the opinions of other people
 - automates word-of-mouth
 - but, through the Web, we can access the opinions of thousands of people
 - recommendations are based on the opinions of many similar users rather than a small group of friends

Ratings matrix

	Alien	Brazil	Crash	Dumbo	E.T.	Fargo
Ben		2	5	3	1	2
Col	5	5		3	4	
Deb					3	
Edd	5	4	2	4	3	3
Flo	5	5	4			

Ann 2 4 3 5

Ratings

- Scalar
 - often numeric, e.g. 1-5
 - but always ordered, e.g. strongly disagree, disagree, neutral, agree, strongly agree
 - not too few values: why?
 - not too many values: why?

visited, an item was purchased

- Binary
 - two values, e.g. +/-, agree/disagree, good/bad
- Unary

- 7 : BOOM! One of my FAVORITE few! Can't live without it.
- 6 : Solid, They are up there, 5 : Good Stuff.
- 4 : Doesn't turn me on doesn't bother me.
- 3: Eh. Not really my thing.
- 2 : Barely tolerable,
- one value, e.g. to indicate that a link was clicked, a web page was

Binary and unary ratings matrices

	Item1	Item2	Item3	Item4	Item5	Item6
User1		*	*	~	*	
User2	v	~		~	~	~
User3					~	
User4	v	~	×	×	*	~
User5	v		~			

_	Item1	Item2	Item3	Item4	Item5	Item6
User1	>			~	~	<
User2					~	
User3			~		~	
User4	~	~		~		~
User5			~	~	~	

Ratings sparsity

- In all cases, a user may have no rating for an item (shown as blank or as \perp)
- Ratings density: proportion of entries in the matrix $\neq \perp$
- In most commercial scenarios.
 - very large number of items, e.g. thousands, perhaps millions
 - even the most active users likely to have rated < 1%</p>
 - hence, very sparse
 - e.g. MovieLens test data: 93.7%
 - e.g. PTV data: 99.7%
- Makes it very hard to find similar users

1: Pass the earplugs.

Explicit ratings

- User is asked to provide the ratings directly
- Often thought to be more accurate than implicit ratings but
 - may be inadvertently inaccurate: do you know your own mind?
 - may be deliberately inaccurate
 - due to privacy/security concerns
 - due to attempts to bias the system or counteract perceived bias
 - due to 'posturing'

Explicit ratings

- But imposes a cost on users
 - requires user's willingness to provide the information
 - requires user's willingness to spend the time
- There were fears that users would not provide ratings without rewards, e.g.
 - a user only receives recommendations in exchange for ratings
 - a user receives other incentives for ratings (T-shirts, discounts, privileged content)
- On the other hand, some users enjoy providing and sharing feedback
 - prestige
 - social interaction
 - the system acts as an extension of their memory

Implicit ratings

- Ratings are inferred from user actions
 - clicks, read time, searches, purchases,...
- Might be recorded by the server or by a client-side module (that, at some point, passes them to the personalization engine, e.g., on the server)
 - client-side is likely to be more precise when measuring times
 - client-side is able to observe a wider range of actions (e.g. a page being bookmarked in browser, a file being downloaded & saved)
- There's no cost to the user
- But implicit ratings are often only unary
 - not easy to infer negative opinions
 - not easy to infer different degrees on a rating scale

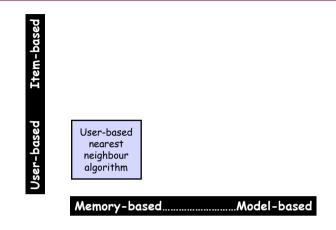
Implicit ratings

- Studies show "...no clear answer on whether implicitly created profiles are more or less accurate than explicitly created profiles." S. Gauch et al., 2007
- But inferences from user actions may not be sound
 - Consider read time
 - Suppose we infer that a user is interested in a topic because s/he spends a long time reading an article on that topic
 - But s/he may have taken a break (although we can infer this too to some extent)
 - S/he may have found the article confusing, rather than interesting
 - S/he may have read it and ultimately found it uninteresting
 - ...
- Inferences are more likely to be sound when based on more data
 - E.g. reading several articles on the same topic
- For some users, privacy concerns are greater (esp. since the inferences may not be correct)
 - E.g. "If TiVo thinks you are gay, here's how to set it straight" (WSJ, 26/10/2002)

CF functionality

- Predict a rating for a given item
 - compute & show a predicted rating for the item
- Recommend items
 - compute & show a list of recommended items, probably ordered
 - one approach is to make predictions for all unrated items and recommend those with the highest predicted ratings
 - but it is possible to build systems that make good recommendations without making any predictions

Types of CF algorithm



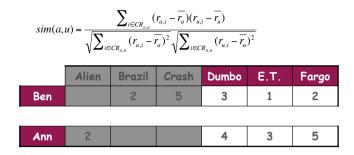
The prediction algorithm

- To predict a rating for active user a and item i:
 - For every user *u* who has rated *i*,
 - Compute the similarity between a and u, sim(a, u)
 - Let NN be a's nearest neighbours who have rated *i*, i.e. the set of size k for whom sim(a, u) is highest
 - Compute a predicted rating, pred(a, i), from NN's ratings for i
- Worked example
 - We'll predict Ann's rating for Brazil
 - Question: We must compute the similarity between Ann and...who? (Why?)

Similarity, *sim(a, u)*

- Many systems use Pearson correlation $sim(a,u) = \frac{\sum_{i \in CR_{a,u}} (r_{a,i} - \overline{r_u})(r_{u,i} - \overline{r_u})}{\sqrt{\sum_{i \in CR} (r_{a,i} - \overline{r_u})^2} \sqrt{\sqrt{\sum_{i \in CR} (r_{u,i} - \overline{r_u})^2}}}$
- It is computed over a and u's co-rated items, CR_{a,u}
 - i.e. items rated by both a and u
- $r_{a,i}$ is a's rating for *i*; similarly for $r_{u,i}$
- $\overline{r_a}$ is a's average rating for the co-rated items; similarly for $\overline{r_a}$
- Pearson correlation will be 1.0 for users in perfect agreement and -1.0 for users in perfect disagreement

Example: *sim(Ann, Ben)*



Exercise: sim(Ann, Col)

$$sim(a,u) = \frac{\sum_{i \in CR_{a,u}} (r_{a,i} - \overline{r_a})(r_{u,i} - \overline{r_u})}{\sqrt{\sum_{i \in CR_{a,u}} (r_{a,i} - \overline{r_a})^2} \sqrt{\sum_{i \in CR_{a,u}} (r_{u,i} - \overline{r_u})^2}}$$

			E.T.	Fargo
Col 5	5	3	4	

Ann	2			4	3	5
-----	---	--	--	---	---	---

Example

- The similarities
 - sim(Ann, Ben) =
 - sim(Ann, Col) =
 - sim(Ann, Edd) = -0.4
 - Sim(Ann, Flo) = 0.0
- Suppose k=3
- Ann's 3 nearest neighbours are: Ben, Col, Flo

Predicted rating, pred(a, i)

• We could just take an average:

$$pred(a,i) = \frac{\sum_{u \in NN} r_{u,i}}{k}$$

- But we want to take into account that some neighbours are more similar to a than others
 - their ratings should contribute more to the prediction
- So instead take a weighted average: $pred(a,i) = \frac{\sum_{u \in NN} r_{u,i} \times sim(a,u)}{\sum_{u \in NN} sim(a,u)}$
- But some users are restrained; others effusive
 - A rating of 4 from the former means the same as a 5 from the latter
- So include an adjustment for users' average ratings:

$$pred(a,i) = \overline{r_a} + \frac{\sum_{u \in NN} (r_{u,i} - \overline{r_u}) \times sim(a,u)}{\sum_{u \in NN} sim(a,u)}$$

Example: pred(Ann, Brazil)

_	Alien	Brazil	Crash	Dumbo	E.T.	Fargo
Ben		2	5	3	1	2
Col	5	5		3	4	
Flo	5	5	4			

Ann 2 4 3 5

Recommendation algorithms

- To recommend items to active user a:
 - Suppose there's a small set of items from which we must make a recommendation (e.g. movies at your multiplex this week)
 - Then compute a predicted rating for each item, as before
 - Recommend the one(s) with the highest predicted ratings
 - Suppose the recommendation is not constrained (e.g. can recommend any movie in the IMDb)
 - For every user *u* excluding *a*,
 - Compute the similarity between a and u, sim(a, u)
 - Let NN be a's nearest neighbours, i.e. the set of size k for whom sim(a, u) is highest
 - Let ${\it Candidates}$ be items rated by at least one member of NN but not rated by a
 - How might you order *Candidates* to decide which to recommend?

Evaluation

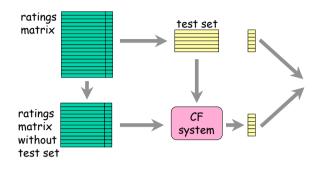
- Academics and practitioners want to measure how well a CF (or other) system meets its goals
- We need metrics
 - will depend on the goals of the system
- First we'll evaluate prediction
 - accuracy
 - coverage
 - time & space efficiency

Accuracy

- The magnitude of the error between a predicted rating and the 'true' rating
- To estimate accuracy:
 - take an item i whose rating by some user a is already known, $r_{{\boldsymbol{a}},i}$
 - get the CF system to predict the rating, pred(a, i)
 - compute the absolute error, abs(r_{a,i} pred(a, i))
 - do this again & again, for lots of different items and users
 - compute the mean (average) of the errors
 - this is called the mean absolute error (MAE)

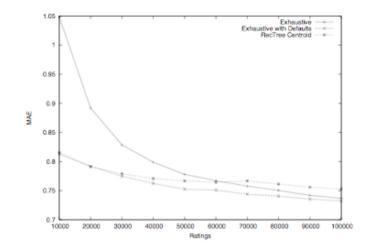
Accuracy

Partition the ratings matrix:



Repeat this process, e.g. with another ratings matrix

MAE on MovieLens dataset



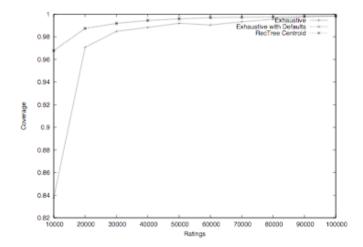
The Netflix competition

- Netflix, online DVD rental company: <u>www.netflix.com</u>
 - their CF system, CineMatch, makes recommendations
- The Netflix Prize:
 - ratings matrix of "more than 100 million ratings from over 480 thousand randomly-chosen, anonymous customers on nearly 18 thousand movie titles"
 - \$1,000,000 Grand Prize for improving accuracy (measured as root mean squared error, RMSE) by 10%
 - possible \$50,000 annual Progress Prizes
- How's it going? <u>www.netflixprize.com/leaderboard</u>
- Issues
 - finding identities (de-anonymization)
 - cheating

Coverage

- Sometimes the system cannot make a prediction
 - Why?
- Using the same evaluation methodology, compute coverage as the percentage of times the system was able to make a prediction

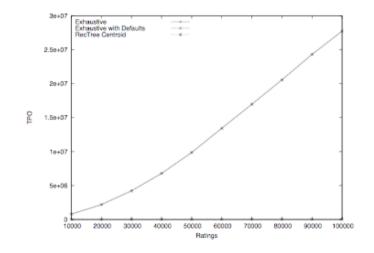
Coverage on MovieLens dataset



Time and space efficiency

- Using the same methodology, we can compute
 - the average time it takes to make a prediction
 - the average amount of memory used when making predictions
- Scalability is important too, e.g. compute the average time it takes to make a prediction
 - when the ratings matrix contains 10,000 ratings
 - when the ratings matrix contains 20,000 ratings
 - when the ratings matrix contains 30,000 ratings

Num of computations on MovieLens dataset



Evaluation of recommendations

- Evaluating recommendations is harder than evaluating predictions
- Accuracy
 - need to evaluate the accuracy of a ranked list
 - unreliable to just add up the MAE for each item
 - users perceive errors at the top of a ranked list of recommendations as much more serious than ones at the bottom
 - hence, perhaps bring in a weighting scheme
 - could use precision (percentage of items the user judges as relevant - see lecture 3)
 - but this ignores placement in the list
 - requires users to make judgements

Evaluation of recommendations

- Other factors
 - novelty: not recommending things the user has seen before
 - serendipity: extending the user's tastes
 - learning rate: how quickly it becomes useful for a user
 - ...
- This discussion has been about evaluating the system in advance of use (experiments)
- We can also evaluate during use
 - user satisfaction questionnaires
 - but also usage statistics: clicks on recommended items, conversion rate (visit-to-buy ratio), repeat visits, etc.

Comparison with content-based filtering

- Assumptions
 - CF: people with similar tastes will rate items similarly
 - CB: items with similar item descriptions will be rated similarly
- Requirements
 - CF: requires ratings but not item descriptions
 - CB: requires item descriptions but not ratings
- Special advantages
 - CF: serendipitous recommendations
 - CB: more responsive to needs (if they can be articulated in terms of item descriptions)
- Conclusion: they are often complementary, hence hybrid systems