CS6320: Formal Methods for Distributed Systems Sample Mid-term Exam

- 1. (2 marks) Show $\{q \Rightarrow r\} \models (p \land q) \Rightarrow r$
- 2. $(2\frac{1}{2} \text{ marks})$ Show $\{q \Rightarrow r\} \vdash (p \land q) \Rightarrow r$ using the rules of the natural deduction system given in the appendix.
- 3. (5 marks) Prove $\vdash (\neg \neg p \lor (p \land q)) \Rightarrow (p \lor q)$ using the rules of the natural deduction system given in the appendix.
- 4. $(2\frac{1}{2} \text{ marks})$ Determine the weakest precondition P that satisfies the following. Simplify your answers as much as you can.

```
(a) (P)y := x^2 (y = x^2)

(b) (P)x := x + x; x := x \text{ div } 2 (y = x^2)
```

5. (3 marks) Prove that $\vdash_{par} (x \neq 0) ProgA(abs(y) > abs(x))$ where ProgA is below. Here, abs evaluates to the absolute value of its argument, e.g. abs(3) = 3 and abs(-3) = 3.

```
y := x;
if x > 0
\{ x := x - 1;
\}
else
\{ x := x + 1;
```

6. (5 marks) Prove that $\vdash_{par} (z \mod 2 = 0) \operatorname{Prog} (z = 2x)$ where $\operatorname{Prog} B$ is below. Use z = x + y as the loop invariant.

```
x := z;

y := 0;

while x \neq y

{ x := x - 1;

y := y + 1;

}
```

Laws of the Algebra of Propositions

Commutativity of
$$\land$$
 and \lor

$$W_1 \land W_2 \equiv W_2 \land W_1$$

$$W_1 \lor W_2 \equiv W_2 \lor W_1$$
Associativity of \land and \lor

$$(W_1 \land W_2) \land W_3 \equiv W_1 \land (W_2 \land W_3)$$

$$(W_1 \lor W_2) \lor W_3 \equiv W_1 \lor (W_2 \lor W_3)$$
Distributivity of \land over \lor and \lor over \land

$$W_1 \land (W_2 \lor W_3) \equiv (W_1 \land W_2) \lor (W_1 \land W_3)$$

$$W_1 \lor (W_2 \land W_3) \equiv (W_1 \lor W_2) \land (W_1 \lor W_3)$$
Absorption
$$W_1 \land (W_1 \lor W_2) \equiv W_1$$

$$W_1 \lor (W_1 \land W_2) \equiv W_1$$

$$W_1 \lor (W_1 \land W_2) \equiv W_1$$
De Morgan's laws
$$\neg (W_1 \land W_2) \equiv \neg W_1 \lor \neg W_2$$

$$\neg (W_1 \lor W_2) \equiv \neg W_1 \land \neg W_2$$
Idempotence of \land and \lor

$$W \land W \equiv W$$

$$W \lor W \equiv W$$
true-false laws
$$\text{True} \land W \equiv W$$
False $\land W \equiv \text{False}$

Involution $\neg \neg W \equiv W$ Complement laws

 $W \land \neg W \equiv \mathbf{False}$ $W \lor \neg W \equiv \mathbf{True}$ $\neg \mathbf{True} \equiv \mathbf{False}$ $\neg \mathbf{False} \equiv \mathbf{True}$

Definition of biconditional $W_1 \Leftrightarrow W_2 \equiv (W_1 \Rightarrow W_2) \land (W_2 \Rightarrow W_1)$

 $W_1 \Rightarrow W_2 \equiv \neg W_1 \lor W_2$ Contrapositive law

 $W_1 \Rightarrow W_2 \equiv \neg W_2 \Rightarrow \neg W_1$

A Natural Deduction System

DEDECITION	_
REPETITION	
\underline{W}	
\overline{W}	
∧-INTRODUCTION	
$W_1,\!W_2$	
$\overline{W_1 \dot{\wedge} W_2}$	
\land -ELIMINATION-LEFT	
$W_1{\wedge}W_2$	
$\overline{W_1}$	
∧-ELIMINATION-RIGHT	
$W_1{\wedge}W_2$	
$\overline{W_2}$	
∨-INTRODUCTION-RIGHT	
W_1	
$rac{W_1}{W_1 ee W_2}$	
∨-INTRODUCTION-LEFT	
W_2	
$\overline{W_1 ee W_2}$	
∨-ELIMINATION	
$W_1 \lor W_2, \frac{W_1}{W_3}, \frac{W_2}{W_3}$	
$\frac{W_1, W_2, W_3, W_3}{W_3}$	
W_3	

	¬-INTRODUCTION
	W_1
	$rac{W_1}{W_2 \wedge eg W_2}$
	$\neg W_1$
	¬-ELIMINATION
	$\frac{\neg \neg W}{W}$
T	\overline{W}
	⇒-INTRODUCTION
	W_1
\dashv	$\underline{\hspace{1cm}}^{W_2}$
	$\overline{W_1} \Rightarrow \overline{W_2}$
	⇒-ELIMINATION
\dashv	$W_1,W_1 \Rightarrow W_2$
	$\overline{W_2}$
	⇔-INTRODUCTION
\dashv	W_1 W_2
	$\frac{w_1}{W_2}, \frac{w_2}{W_1}$
	$W_1 \Leftrightarrow W_2$
4	⇔-ELIMINATION-LEFT
	$W_1 \Leftrightarrow W_2, W_1$
	$\frac{W_2}{W_2}$
	⇔-ELIMINATION-RIGHT
	$W_1 \Leftrightarrow W_2, W_2$
	$\frac{\cdots \cdots v_2, v_2}{W_1}$
	•••

Floyd-Hoare Deduction System for Partial Correctness

Assignment	
	$\overline{(\!(Q[V \mapsto \! E])\!)V \!:=\! E(\!(Q)\!)}$
Sequencing	
Sequencing	$\frac{(\!(P)\!) C_1 (\!(R)\!), (\!(R)\!) C_2 (\!(Q)\!)}{(\!(P)\!) C_1; C_2 (\!(Q)\!)}$
One-armed-conditional	
	$\frac{(B \land P) C (Q), (\neg B \land P) \Rightarrow Q}{(P) \text{ if } B C (Q)}$
Two-armed-conditional	
	$rac{\left(B \wedge P ight) C_1 \left(Q ight), \left(\neg B \wedge P ight) C_2 \left(Q ight)}{\left(P ight) \mathbf{if} B C_1 \mathbf{else} C_2 \left(Q ight)}$
While	
	$\frac{(\!\mid\! Inv \land B \mid\!) C (\!\mid\! Inv \mid\!)}{(\!\mid\! Inv \mid\!) \mathbf{while} \; B \; C (\!\mid\! Inv \land \neg B \mid\!)}$
Consequence	$\frac{P \Rightarrow P', (\!(P')\!) C (\!(Q')\!), Q' \Rightarrow Q}{(\!(P)\!) C (\!(Q)\!)}$