
Lecture 2:

The Syntax of Propositional Logic

Aims:

• To discuss what we mean by a logic;

• To look at what is meant by propositional logic;

• To look at the syntax of propositional logic.

2.1 Propositional Logic

• In this section of the course, we introduce logic in general, and then look at one particular logic,
propositional logic. We use this to introduce many of the main ideas that are to be found in every
logic. We will look at the syntax and semantics of this logic, how to translate simple sentences of English
into syntactically well-formed expressions of this logic, and how to show the validity of arguments in a
number of ways.

• You are warned that logic terminology and notation is quite variable between different books. I have
been consistent within these notes, and have also tried to point out cases where books use different
terminology and notation.

• Logic is the study of reasoning.

• It is used to study arguments, comprising premisses and conclusions, such as the following:

1. Every elephant is grey.

2. Clyde is an elephant.

3. Therefore, Clyde is grey.

This a valid argument.

Why? Because: If all the premisses are true, then the conclusion must be true. This definition of a
valid argument says nothing about whether the premisses are in fact true: their truth is not necessary
for the validity of the argument, as witnessed by the validity of the following argument (despite the
falsity of its first premiss):

1. Every elephant is pink.

2. Clyde is an elephant.

3. Therefore, Clyde is pink.

Nor is truth of the premisses sufficient for validity of an argument, as witnessed by the invalidity of
the following (despite the truth of both premisses):
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1. Every elephant is grey.

2. Martie is grey.

3. Therefore, Martie is an elephant.

(Martie could be a grey mouse, for example.)

• The validity of an argument rests on its form, not the truth of the sentences that comprise it.

• Logic is widely used in many areas of Computer Science.

– Circuit design

– Boolean data types

– Program specification

– Program verification

– Logic programming

– Automated theorem-proving

– Artificial Intelligence

• A well-defined, precise, unambiguous notation is needed, leading us to what is referred to as symbolic
logic.

In fact, there is a large variety of symbolic logics. The two most common symbolic logics are:

– Propositional logic

– First-order predicate logic

• Since symbolic logic tries to formalise everyday reasoning to some extent, there will be connections
between the logics we study and English, which we will note as they arise. However, symbolic logics are
formal languages and so the connection will be less than perfect. Therefore, you must learn the formal
semantics of the language. Students who try to ‘get by’ using informal paraphrases will regularly be
led astray.

2.2 Statements

• Propositional logic (like most varieties of logic) is only concerned with sentences that make statements.
(This is not a serious restriction: these are the sentences most often used in arguments and in the
sort of descriptions we would use to specify a software system, for example.) Statements state a fact,
or describe a state of affairs. Such sentences in English are also called ‘declarative’ or ‘indicative’
sentences. E.g.:

– It is sunny.

– Roses are red and violets are blue.

– Nobody knows the answer to that question.

• So, we exclude questions, commands, requests, instructions, and so on. E.g.:

– Is it sunny?

– x := x + 1;

– Get off my case!

– I promise to be there.
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– I name this ship “Dignity”.

• Here are more examples of statements:

– 44/2 = 11× 2

– 4 < 5

– 4 > 5

– For all integers x, x + 0 = x

• A statement will be true or false. It must be one or the other. (It can’t be both, nor can it be undefined
or some halfway house). You can see we are already diverging from English, in which statements of
less than determinate truth value are commonplace. true and false are referred to as truth values.

• We begin with atomic statements.

E.g.

Clyde is cold.

• In propositional logic, we don’t break the atomic statements down any further: we do not determine the
truth values of the atomic statements by decomposing them into subexpressions that denote objects,
properties and relationships. We simply stipulate whether the atomic statements are true or false. An
atomic statement which is subjected to this level of analysis is called a proposition. (When logicians
go on to break the atomic statements down, then they need a more expressive logic, called (first order)
predicate logic.)

• We form compound statements from atomic statements, by joining them using connectives.

E.g.

Clyde is cold and Clyde is wet.

• This is a compound statement: the word ‘and’ is an example of a connective. The atomic statements
are ‘Clyde is cold’ and ‘Clyde is wet’.

• We make a further simplification, one which makes us diverge further from English.

The meaning (truth value) of a compound statement depends only on the meanings (truth values) of
the statements of which it is composed.

• We must therefore restrict our attention to connectives that are truth-functional.

‘Clyde is cold and Clyde is wet.’

Knowing the truth value of ‘Clyde is cold’ and of ‘Clyde is wet’ allows us to determine the truth value
of ‘Clyde is cold and Clyde is wet’.

‘Clyde is cold because Clyde is wet.’

Knowing the truth value of ‘Clyde is cold’ and of ‘Clyde is wet’ would still not be enough for us to
determine the truth value of ‘Clyde is cold because Clyde is wet’: we would still know nothing about
the reasons for his coldness.

• So, ‘and’ is a truth-functional connective but ‘because’ is not. (At least, as far as these examples show.)

This restriction gives simplicity and yet logics that use only truth-functional connectives have proved
very productive.
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• An atomic proposition may just as well be represented by a name such as p, p1 or q.

These names are called propositional symbols.

If desired, they can be related to English statements, as follows:

p =def Clyde is cold

q =def Clyde is wet

• We now look at the syntax and semantics of propositional logic.

2.3 The Syntax of Propositional Logic

• The expressions of this language are called well-formed formulas or wffs.

• I’ll define the syntax in two ways, first using an informal recursive definition and then using a BNF-
grammar. Obviously, one definition is enough. The only reason for showing you two definitions is in
case you are more comfortable with one over the other.

• So, here’s the recursive definition.

1. Every propositional symbol is a wff. (We use p, p1, p2, p3,. . . , q, q1, q2, q3 . . . as propositional
symbols.)

2. For any wff W , the following is also a wff:

¬W

3. For any two wffs W1 and W2, the following are also wffs:

W1 ∧W2 W1 ∨W2

W1 ⇒W2 W1 ⇔W2

4. Any wff may be enclosed in parentheses and will still be a wff.

5. No other string of symbols is a wff.

• Rules (2) and (3) form compound wffs from other wffs.

• The symbols ¬,∧,∨,⇒ and ⇔ are the connectives.

• Here are examples of wffs:

p q p1
(¬p) (¬q) (¬(¬q))

(p ∧ p) (p ∨ q) (p1 ⇒ (¬q1))
(p⇔ (q1 ∨ q2)) ((p1 ∧ p2) ∨ (q1 ∧ q2)) (¬((p1 ∧ p2) ∨ (q1 ∧ q2)))

• Here’s the same language, defined using BNF.
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〈wff〉 ::= ( 〈wff〉 )
〈wff〉 ::= ¬ 〈wff〉
〈wff〉 ::= 〈wff〉 ∧ 〈wff〉
〈wff〉 ::= 〈wff〉 ∨ 〈wff〉
〈wff〉 ::= 〈wff〉 ⇒ 〈wff〉
〈wff〉 ::= 〈wff〉 ⇔ 〈wff〉
〈wff〉 ::= 〈prop symbol〉

〈prop symbol〉 ::= p
〈prop symbol〉 ::= p0
〈prop symbol〉 ::= p1
〈prop symbol〉 ::= p2
〈prop symbol〉 ::= q
〈prop symbol〉 ::= q0
〈prop symbol〉 ::= q1
〈prop symbol〉 ::= q2

...
...

...

• Both definitions (recursive and BNF) are ambiguous.

When it comes to the semantics of a wff, we will need to know which subwffs to evaluate first.

– Parentheses determine evaluation order.

– Precedence rules can be given:

Highest ¬ ∨ ∧ ⇒ ⇔ Lowest

e.g. p ∨ q ∧ r ⇒ p evaluates as ((p ∨ q) ∧ r)⇒ p

– Associativity rules can be given:

Associate to the left: ∧ ∨ ⇔
Associate to the right: ⇒

e.g. p ∧ q ∧ r ⇒ p⇒ r evaluates as ((p ∧ q) ∧ r)⇒ (p⇒ r)

• On the whole, in this module we will use a lot of parentheses. But, you must remember that ¬ has
highest precedence. This is very useful in reducing the number of parentheses. So, e.g., ¬p∧q evaluates
as (¬p) ∧ q, and, for the other evaluation order, you would write ¬(p ∧ q).
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