
Lecture 12:

Total Correctness

Aims:

• To look at the inference rules for total correctness.

12.1 Total Correctness

• Suppose we are asked to prove

`tot LP MC LQ M
So now we are concerned with termination as well as partial correctness.

• We need a different deduction system with a different set of inference rules. In a language as simple
as MOCCA, there are only two kinds of problem that can prevent termination.

– The value of an expression may be undefined, e.g. division by zero.

– A while loop may never be exited.

Of course, if we extend our language, then there could be other sources of non-termination. For
example, if we add procedures and we allow recursion then any command that contains a call to a
recursive procedure (including cases of mutual recursion) may result in an infinite computation.

12.2 A Deduction System for Total Correctness

• Most of the inference rules are unchanged. But wherever we evaluate an expression, we must make
sure that its value is defined. For example, if we have the following assignments,

x := 10 div u

x := 32 mod v

x := z div(w + 1)

x := 1 + z mod(x− y)

we must make sure that u, v, (w + 1) and (x− y) are not zero, respectively.

If we have an if command or a while loop, the Boolean expression may involve some arithmetic, and
again this gives the potential for a division by zero. Here are examples:

if x = 10 div y . . .

while x = 32 mod y . . .

1



• In our new inference rules, we write ‘E is defined’. But you don’t write this in a proof. You replace it
by a suitable assertion. So if, within E, there’s a division (using div or mod) by some expression E′,
you replace ‘E is defined’ by E′ 6= 0. If there’s no division, then simply ignore ‘E is defined’.

Sequencing
LP MC1 LR M, LR MC2 LQ M

LP MC1;C2 LQ M

Assignment
E is defined

LQ[V 7→ E] MV := E LQ M

Consequence
P ⇒ P ′, LP ′ MC LQ′ M, Q′ ⇒ Q

LP MC LQ M

One-armed-conditional

B is defined, LB ∧ P MC LQ M, (¬B ∧ P )⇒ Q

LP M if B C LQ M

Two-armed-conditional

B is defined, LB ∧ P MC1 LQ M, L¬B ∧ P MC2 LQ M
LP M if B C1 else C2 LQ M

• The rule for while loops, however, is much more complicated.

While
B is defined,

L Inv ∧B ∧ 0 ≤ VE ∧VE = VE 0 MC L Inv ∧ 0 ≤ VE ∧VE < VE 0 M
L Inv ∧ 0 ≤ VE Mwhile B C L Inv ∧ ¬B M

• We have to try to discover a variant. A variant is an integer expression whose value can be shown
to decrease every time we go round the loop, but which is always non-negative. If we can find an
expression that has these properties, the loop must terminate. The expression can only decrease in
value a finite number of times before it becomes zero.

In the rule above VE is the variant. We require that its value decreases by saying in the condition of
the rule that, if its value is VE 0 before the body, then its value is less than VE 0 after the body.

• How do we prove the total correctness of a while loop?

1. Guess a wff Inv that you hope is an invariant and an integer expression VE that you hope is a
variant.

2. Prove that (Inv ∧ ¬B)⇒ Q.

3. Push Inv ∧ 0 ≤ VE ∧VE < VE 0 upwards through C. Let’s call the wff you get from this W .

4. Prove that (Inv ∧B ∧ 0 ≤ VE ∧VE = VE 0)⇒W .

5. Now write Inv ∧ 0 ≤ VE above the while loop. (Continue to push this up through the rest of
the program, if any.)

2



• Prove that `tot Lx ≥ 0 MProgA L y = x! M where ProgA is:

y := 1;

z := 0;

while x 6= z
{

z := z + 1;

y := y × z;

}

– The invariant is y = z! as before.

– The variant is x− z.

We can see that loop-test B, i.e. x 6= z, and all the expressions in the assignment commands are defined
(no uses of div or mod).

Acknowledgements

My approach here was partly based on the approach taken in [Kal90] as well as [HR00].

References

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cam-
bridge University Press, 2000.

[Kal90] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice Hall, 1990.

3


	Total Correctness
	A Deduction System for Total Correctness

