
Lecture 11:

More Invariants

Aims:

• To discuss how to discover invariants;

• To see more examples of proofs that use invariants.

11.1 Hints for Discovering Invariants

• As mentioned in the previous lecture, finding invariants may require some ingenuity. In this lecture,
we look at some rules of thumb that may help you.

11.2 Hint 1: Base the Invariant on the Postcondition

• Look at the postcondition of the while command.

If it’s a conjunction, can you break it into two Inv ∧ ¬B?

• Suppose you have a program, ProgA below, which, it is claimed, computes xdiv y and xmod y, i.e.

Lx ≥ 0 ∧ y > 0 MProgA Lx = q × y + r ∧ 0 ≤ r ∧ r < y M

There are three conjuncts in the postcondition. So there are several ways to split it up. But we know
the loop test is r ≥ y. If we negate this, we get r < y. So this suggests that the rest of the postcondition
is the invariant:

x = q × y + r ∧ 0 ≤ r

1



q := 0;

r := x;

while r ≥ y
{

q := q + 1;

r := r − y;

}

11.3 Hint 2: Replace a Constant by a Variable

• Take the postcondition, replace a constant by a variable and then split the postcondition into two as
per Hint 1.

• In this example, a is an array of integers, indexed from 1 to n. We want to prove that

`par L 0 < n MProgB L s =

i=n∑
i=1

a[i] M

where ProgB is below.

To some of you, the invariant may be obvious anyway. But, in case it’s not, let’s see how Hint 2 helps
us.

Here is an equivalent postcondition: L s =
∑i=k

i=1 a[i] ∧ k = n M

This is now easily split into invariant

s =

i=k∑
i=1

a[i]

and negation of loop test
k = n

2



Let’s confirm this by completing the proof.

s := 0;

k := 0;

while k 6= n
{

k := k + 1;

s := s + a[k]

}

11.4 Hint 3: Tracing

• The invariant can often be found by tracing the loop and inspecting the values of the variables.

• For example, let’s trace the factorial program that we proved in the previous lecture. Here it is again
for ease of reference:

LTrue M
y := 1;
z := 0;
while z 6= x
{ z := z + 1;

y := y × z;
}
L y = x! M

We will set x to 6. The first two commands (prior to the loop) assign 1 to y and 0 to z.

Here’s a trace of the loop in the factorial program:

B iteration x y z
— — 6 1 0
true 1 6 1 1
true 2 6 2 2
true 3 6 6 3
true 4 6 24 4
true 5 6 120 5
true 6 6 720 6
false —

We see that y = z!

3



11.5 Hint 4: Do Some Quick Checks

• When you have guessed an invariant, if possible, quickly check that you think that the proofs will go
through.

– Is the invariant strong enough that, when conjoined with the negation of the loop-test, it will
imply the postcondition of the while command?

– Is the invariant weak enough that it will be implied by the precondition of the while command?

Acknowledgements

I continue to base material on that in Chapter 4 of [HR00].

References

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cam-
bridge University Press, 2000.

4


	Hints for Discovering Invariants
	Hint 1: Base the Invariant on the Postcondition
	Hint 2: Replace a Constant by a Variable
	Hint 3: Tracing
	Hint 4: Do Some Quick Checks

