
Lecture 1:

Introduction to Correctness

Aims:

• To look at the different types of errors that programs can contain;

• To look at how we might detect each of these errors;

• To look at the difficulty of detecting run-time errors using testing.

1.1 Bugs

• Correctness. Informally, an algorithm or program is correct if it is free from error. In particular, it
must map the parameters to the return values in accordance with the problem specification. (We’ll
give a more formal definition later in the module, where we will distinguish partial correctness and
total correctness).

• Three types of program error.

Compile-time errors. These are errors that are detected by the compiler when it is attempting to
translate from the source language to the target language. Hence, these are errors that are detected
in advance of execution of the program. They arise when the programmer, through ignorance or
carelessness, fails to follow the syntactic and static semantic rules of the programming language.

– Syntax errors. Examples in Java are failing to match up parentheses or braces, omitting
semi-colons, mistyping the word public as publc, and so on.

– Static semantics errors. Examples in Java are failing to initialise local variables, certain
mismatched type errors (such as assigning a value that is of type boolean into a variable
that is of type int), declaring in the header of a method that it returns a boolean but in the
body of the method returning an int or returning nothing, and so on.

It is not uncommon the first time you compile a program to get over 100 compiler-errors. As you
have probably realised, one mistake early in the program can wrong-foot the compiler causing it
to find fault with many subsequent lines of the program.

Run-time errors (dynamic semantics errors). Run-time errors arise during execution of the pro-
gram. They cannot be detected at compile-time. When detected during execution, they cause
the program to crash. Examples in Java include division of an int by zero and index out of
bounds errors. An index out of bounds error arises when your program attempts to access a
non-existent cell of a data structure. For example, if a is a Java array of length 10, then the cells
are a [0] . . . a [9] . If your program attempts to access, e.g., a[−1] or a[10], this gives rise to an
index out of bounds error. Run-time errors can also arise when your program is attempting to
communicate with some external device. For example, if your program is trying to write data to
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a file on disk, the file may not exist, the program may not have write-permission for the file, the
disk may be full, or the disk drive may have crashed. Any of these will mean that your program’s
attempt to write data will fail. Unless your program includes special checks for these situations
and code to recover from them, then, if they arise, your program will crash.

Since these errors cannot be detected in advance by the compiler, the conventional way of discov-
ering them is through program testing, which we discuss below.

Logic errors. Logic errors are errors which do not result in error messages from the compiler or
the run-time environment. We are not notified of them at all. They are conceptual errors: our
algorithm or program does not match the problem specification. The actual results are not the
same as the expected results. For example, consider this problem specification:

Problem 1.1.
Parameters: An integer, n.
Returns: 2n

An algorithm or program that is supposed to solve this problem contains logic errors if, for
example, it apparently fails to terminate; or it always seems to give answers that are off by one,
e.g. for n = 3, it returns the answer 7; or it gets the right answers for all non-negative n, but not
for negative n, e.g. for n = −3 it returns 8 instead of 0.125.

Again the conventional way of discovering these errors is through program testing, discussed
below.

Of course, if our programming language is interpreted instead of compiled, then syntax errors and
static semantics errors will only be discovered at run-time, like dynamic semantics errors. The ability
to find errors in advance of execution is one of the advantages of compilers.

• We also cannot rule out the possibility of hardware errors or systems software errors (e.g. errors in
the compiler or interpreter). Thankfully, these days hardware errors are a rarity. Errors in systems
software, however, are a genuine problem.

• The dangers of releasing buggy software include loss of money, livelihood, life, etc. and damage to
health, environment, etc.

• We’re going to discuss testing below. But there’s an obvious weakness with testing. Our test cases
may simply fail to create the circumstances that give rise to some of the more subtle errors. They will
go undetected, and may only reveal themselves when the program is in use. Even programs which have
executed successfully for many years may still contain bugs that would cause them to fail in certain
circumstances.

• There’s an obvious advantage in getting the compiler to do as much error-checking as possible. Errors
will then be detected in advance of execution.

• So a natural question arises: how much can the compiler do? For example, can we get the compiler to
detect more of the dynamic semantics

• Let’s see how easy or hard it would be for the compiler to detect possible division by zero errors.

• Which of these would ordinarily cause run-time errors and which could a compiler easily detect?

public int method ( int x )
{ return 3 / 0 ;
}
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public int method ( int x )
{ return 3 / x ;
}

public int method ( int x )
{ i f ( x > 0)

{ return 3 / x ;
}
else
{ return −1;
}

}

public int method ( int x )
{ return 3 / ( x − x ) ;
}

public int method ( int x )
{ int y = x − x ;

return 3 / y ;
}

public int method ( int x , int y )
{ for ( int i = 0 ; i < y ; i++)

{ x += −2;
}
return 3 / x ;

}

• Can we write a compiler to work out which of these could cause run-time errors? Some of the faulty
ones are easy to spot syntactically. Others could be found from running the program on a few well-
chosen test cases (although this somewhat defeats the object of asking a compiler to find the errors).
Others would require the compiler to reason quite extensively about operations on integers and about
control flow.

In fact, it can be proved that we cannot write a program that can take in any other program as input
and infallibly tell us whether the input program will, when executed on certain inputs, attempt a
division by zero.

This result seems to drive us back towards a reliance on testing. Let’s look at testing in detail to see
its limitations.

1.2 Testing

• You need to run your program on test data and compare the actual answers with the expected answers.

– Rarely is it practical to test exhaustively. How many different actual parameter values do these
have?

public boolean method ( int x )
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public boolean method ( int x , int y )

– Instead, design a test-suite with good coverage: favour quality over quantity

• In black-box testing,

– Design test-suite on the basis of the problem specification.

– Use equivalence partitioning : choose test cases that are representative of collections of data.

∗ normal, boundary and exceptional values

What test values would you use for the following:

Problem 1.2.
Parameters: A list of integers, L.
Returns: The sum of the integers in L.

• In random testing,

– Test-suite is chosen randomly.

– Allows large test suites.

– Avoids subconsciously under-testing parts you’re not sure of

• In glass-box testing (also called white-box testing),

– The test-suite is chosen based on analysis of the control flow of the program itself

– Choose test data that exercises all commands in the program.

– If possible, choose test data that exercises all paths through the program.

• E.g. Devise values of x that will exercise all commands and all paths in the following:

i f ( x = 0)
{ System . out . p r i n t l n ( ‘ ‘A ’ ’ ) ;
}
else
{ System . out . p r i n t l n ( ‘ ‘B ’ ’ ) ;
}
i f ( y = 0)
{ System . out . p r i n t l n ( ‘ ‘C ’ ’ ) ;
}
else
{ System . out . p r i n t l n ( ‘ ‘D ’ ’ ) ;
}

• Note the way in the last example that the number of paths starts to multiply up.

All-paths testing is quickly impractical. Instead, you have to test some representative subset of the
paths.
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1.2.1 Testing is Inconclusive

• In any discussion of testing, remember

Testing cannot demonstrate the absence of errors, only their presence.

• Even if you’ve done a very great amount of testing with no apparent errors, you still cannot conclude
that your program is error-free. Perhaps there is some bizarre error that occurs for the numerous
inputs that you haven’t tested.

Always assume that there remains at least one more error.

• So, if none of your tests has yet found an error, then the best thing to conclude is that your testing
hasn’t yet been demanding enough to find that last remaining error that inevitably lurks in the program
somewhere! So you need some better test data in order to find that error.

A successful test is one that finds an error.

1.3 Proving Correctness

• As we have seen, testing is inconclusive (except in those rare occasions when you can test exhaus-
tively on all possible inputs). For safety-critical software that can endanger health and life, bugs are
disastrous. It would be nice to have stronger guarantees than testing can give. It would be nice to
prove that the program is correct. In other words, to prove that, for all legal inputs, it terminates and
produces the right answer.

• Any correct algorithm can be proved to be correct.

• Of course, there is a risk of a mistake in the proof! But at least a proof will increase confidence in the
program’s correctness.

• The next part of this module shows you how to do correctness proofs. Before we can look at the details
of the proofs, we have to take a digression to recap our understanding of logic.
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