Interpretability of Neural Networks

Derek Bridge
School of Computer Science and Information Technology
University College Cork

Initialization

```python
In [ ]: %load_ext autoreload
%autoreload 2
%matplotlib inline

In [ ]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [ ]: import tensorflow as tf
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.models import Model
import cv2
```

Acknowledgments

- I have used code from the following two sources:
 - Some of the code is adapted from code in: François Chollet: *Deep Learning with Python*, Manning Publications, 2018
 - Other code is adapted from https://www.sicara.ai/blog/2019-08-28-interpretability-deep-learning-tensorflow

The result is a bit of a mess! Sorry!
- The figures comes from the paper *Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI* by Arrieta et al, 2019
Warning

- One of the visualizations can take several hours to run

Introduction: XAI

- As soon as AI systems began to be used in real applications, there was interest in getting them to explain their reasoning.
- But with recent successes in deploying Machine Learning systems, there has been an explosion of interest.
 - Related terminology includes: XAI (eXplainable AI), interpretability, intelligibility, transparency, ...
- Different stakeholders may have different goals that they hope XAI will satisfy.

XAI: Some Distinctions

- Local explanations vs. global explanations:
 - **Local**: Explaining an individual prediction
 - **Global**: Explaining the whole model — what has it learned
- White-box models vs. black-box models:
 - **White-box models**: models that are considered interpretable due to their simple structure, such as small decision trees or sparse linear models
 - **Black-box models**: models which are not easily understood, e.g. neural networks and ensembles such as Random Forests
- Model-specific methods vs. model-agnostic methods:
 - **Model-specific methods**: methods for producing explanations that only work for certain kinds of model, e.g. methods that only apply to convolutional neural networks
 - **Model-agnostic methods**: methods for producing explanations that work for a wide class of model, e.g. methods that can work for decision trees, Random Forests and neural networks

Accuracy/Intelligibility Trade-Off

- This image is from a presentation by David Gunning of DARPA
- The goal of DARPA's XAI Research Programme is to develop models that are more easily explained but without sacrificing accuracy.

Visualizing Neural Networks

- Let's look at some examples of the simpler work that has been done to make neural networks more intelligible, especially in the case of neural networks for images
- This involves various kinds of visualizations. We will look at three.
- You do not have to understand the code!
- We will run these visualizations on the VGG16 neural network.
In []: vgg16_base = VGG16(weights="imagenet", include_top=False, input_shape=(224, 224, 3))

In []: vgg16 = VGG16(weights="imagenet", include_top=True)

In []: vgg16.summary()

- In the rest of this lecture, we'll just work with the cat image that we used in the previous two lectures

In []: img_path = "datasets/dataset_wikipedia_images/img1.jpg"
 img = load_img(img_path, target_size=(224, 224))
 img_tensor = img_to_array(img)
 img_tensor = np.expand_dims(img_tensor, axis=0)
 img_tensor = preprocess_input(img_tensor)

Visualizing Convolutional Layer Activations

- For a given input image, we can visualize the activations of each of the feature maps in a given convolutional layer
- This will help show the kind of feature that the feature map is detecting

In []: # Create a model that outputs the activations of the convolutional and pooling layers of the VGG16 model
 layer_outputs = [layer.output for layer in vgg16_base.layers[1:19]]
 activation_model = Model(inputs=vgg16_base.input, outputs=layer_outputs)

In []: # A function to plot the activation a given feature map within a given layer on a given input tensor
 def plot_activation(activation_model, layer_idx, map_idx, img_tensor):
 # Run the model on the input tensor
 model_activations = activation_model.model.predict(img_tensor)
 # The activation of the given layer
 layer_activation = model_activations[layer_idx]
 # The activation of a given feature map in the layer
 map_activation = layer_activation[0, :, :, map_idx]
 # Plot
 plt.matshow(map_activation, cmap="viridis")

In []: # Now we can plot the activation of, e.g., the fourth feature map in the first convolutional layer
 plot_activation(activation_model, 1, 4, img_tensor)
In []: # Now a visualization of all activations of all feature maps in all convolutional and pooling layers

Run the model on the input tensor
activations = activation_model.predict(img_tensor)

Get the names of the layers, to label the visualization
layer_names = []
for layer in activation_model.layers[1:19]:
 layer_names.append(layer.name)
images_per_row = 16

Now let's display our feature maps
for layer_name, layer_activation in zip(layer_names, activations):
 # This is the number of features in the feature map
 n_features = layer_activation.shape[-1]

 # The feature map has shape (1, size, size, n_features)
 size = layer_activation.shape[1]

 # We will tile the activation channels in this matrix
 n_cols = n_features // images_per_row
 display_grid = np.zeros((size * n_cols, images_per_row * size))

 # We'll tile each filter into this big horizontal grid
 for col in range(n_cols):
 for row in range(images_per_row):
 channel_image = layer_activation[0, :, :, col * images_per_row + row]

 # Post-process the feature to make it visually palatable
 channel_image -= channel_image.mean()
 channel_image /= (channel_image.std() + 1e-5)
 channel_image *= 64
 channel_image += 128
 channel_image = np.clip(channel_image, 0, 255).astype('uint8')

 # Display the grid
 scale = 1. / size
 plt.figure(figsize=(scale * display_grid.shape[1],
 scale * display_grid.shape[0]))
 plt.title(layer_name)
 plt.grid(False)
 plt.imshow(display_grid, aspect="auto", cmap="viridis")
 plt.show()

• Lower layers are edge detectors and, because these edges are common, there is a lot of activation, retaining a lot of the image
• Higher in the network, features become more abstract and hence activation is less about the image and more about the class
• In higher layers, there are increasing cases of no activation, meaning the feature is not present at all
Visualizing Convolutional Layer Inputs that Maximize Activations

- In this visualization, we display the kinds of inputs that feature maps respond to
- This is done by gradient ascent on the input space:
 - Start from a blankish input image
 - Finds the changes to the input that maximise the response of a feature map

```python
In [ ]: def improve_image(img):
    # normalize tensor: center on 0., ensure std is 0.1
    img -= img.mean()
    img /= (img.std() + 1e-5)
    img *= 0.1

    # clip to [0, 1]
    img += 0.5
    img = np.clip(img, 0, 1)

    # convert to RGB array
    img *= 255
    img = np.clip(img, 0, 255).astype("uint8")
    return img

In [ ]: epochs = 100
    step_size = 1.

    def inspect_map(model, layer_name, map_idx):
        # Create a connection between the input and the target layer
        submodel = tf.keras.models.Model([model.inputs[0]], [model.get_layer(layer_name).output])

        # Initiate random noise
        input_img_data = np.random.random((1, 224, 224, 3))
        input_img_data = (input_img_data - 0.5) * 20 + 128.

        # Cast random noise from np.float64 to tf.float32 Variable
        input_img_data = tf.Variable(tf.cast(input_img_data, tf.float32))

        # Iterate gradient ascents
        for _ in range(epochs):
            with tf.GradientTape() as tape:
                outputs = submodel(input_img_data)
                loss_value = tf.reduce_mean(outputs[:, :, :, map_idx])
                grads = tape.gradient(loss_value, input_img_data)
                normalized_grads = grads / (tf.sqrt(tf.reduce_mean(tf.square(grads))) + 1e-5)
                input_img_data.assign_add(normalized_grads * step_size)

        return improve_image(input_img_data.numpy()[0])

In [ ]: # E.g. inspect feature map 0 of the block3_conv layer
    model = tf.keras.applications.vgg16.VGG16(weights='imagenet', include_top=True)
    img = inspect_map(model, 'block3_conv1', 0)
    plt.imshow(img, cmap="viridis")
```
In []: # Now visualize the first 64 feature maps of each convolutional layer (not the pooling layers)
for layer_name in ["block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1", "block5_conv1"]:
 size = 224
 margin = 5

 # This an empty (black) image where we will store our results.
 results = np.zeros((8 * size + 7 * margin, 8 * size + 7 * margin, 3)).astype("uint8")

 for i in range(8): # iterate over the rows of our results grid
 for j in range(8): # iterate over the columns of our results grid
 # Generate the pattern for filter `i + (j * 8)` in `layer_name`
 filter_image = inspect_map(model, layer_name, i + (j * 8))

 # Put the result in the square `(i, j)` of the results grid
 horizontal_start = i * size + i * margin
 horizontal_end = horizontal_start + size
 vertical_start = j * size + j * margin
 vertical_end = vertical_start + size

 results[hori

The feature maps in block1_conv1 respond to simple edges and colours
The feature maps in block2_conv1 respond to simple textures made from combinations of edges and colours
The feature maps in later layers respond to natural-looking textures resembling feathers, leaves, etc

Visualizing Heatmaps for Classifications

- For a given input image and a predicted class, this will show which parts of the image were most useful in making the classification
 - For every pixel, we compute a score indicating how important that pixel is in predicting the class
 - We display the scores as a heatmap
 - This can be helpful in debugging models: we can see whether the model is paying attention to the 'right' parts of the image
In []: # Create function to apply a grey patch on an image
def apply_grey_patch(image, top_left_x, top_left_y, patch_size):
 patched_image = np.array(image, copy=True)
 patched_image[top_left_y:top_left_y + patch_size, top_left_x:top_left_x + patch_size, :] = 127.5
 patched_image[top_left_x:top_left_x + patch_size, top_left_y:top_left_y + patch_size, :] = 127.5
 return patched_image

Recall the predictions for our img_tensor
preds = vgg16.predict(img_tensor)
Get the index of the output unit that was most highly activated
output_unit_idx = np.argmax(preds[0])
class_index = output_unit_idx
patch_size = 20
sensitivity_map = np.zeros((img_tensor.shape[1], img_tensor.shape[2]))

Iterate the patch over the image
for top_left_x in range(0, img_tensor.shape[1], patch_size):
 for top_left_y in range(0, img_tensor.shape[2], patch_size):
 patched_image = apply_grey_patch(img_tensor[0], top_left_x, top_left_y, patch_size)
 predicted_classes = model.predict(np.array([patched_image]))[0]
 confidence = predicted_classes[class_index]
 # Save confidence for this specific patched image in map
 sensitivity_map[top_left_x:top_left_x + patch_size, top_left_y:top_left_y + patch_size, :] = confidence
plt.imshow(sensitivity_map)

In []: # Generate a new image that superimposes the original on the sensitivity map
NB Requires OpenCV

We use cv2 to load the original image
img = cv2.imread(img_path)

We resize the heatmap to have the same size as the original image
sensitivity_map = cv2.resize(sensitivity_map, (img.shape[1], img.shape[0]))

We convert the heatmap to RGB
sensitivity_map = np.uint8(255 * sensitivity_map)

We apply the heatmap to the original image
sensitivity_map = cv2.applyColorMap(sensitivity_map, cv2.COLORMAP_JET)

0.4 here is a heatmap intensity factor
superimposed_img = sensitivity_map * 0.4 + img
plt.imshow(improve_image(superimposed_img))

• This image shows us why the model thinks the image contains a cat and where in the image it thinks the cat is located
Model-Agnostic Methods

- The great advantage of model-agnostic methods is their flexibility: they can be used with a wide range of models, including Black-Box Models.
- Their great weakness is: they cannot refer to the model itself or its operation, so are they really explaining the model's prediction at all?
- Let's consider several model-agnostic methods. We'll describe them only in very high-level terms. In each case,
 - Assume we have learned a classification model M from some training data.
 - We have been given an object x.
 - Model M predicts the class of x to be \hat{y}.
 - But the user asks us to explain this prediction.

LIME

- LIME takes x and 'perturbs' it (i.e. modifies the values of its features a little bit) to create a set of objects that are similar to x. Call this set of examples S.
- Then it uses M to predict the class of each example in S.
- Then it treats $S \cup \{x\}$ (with their predicted labels) as the training data for a linear model (logistic regression).
- Since (sparse) linear models are supposed to be interpretable, it shows the linear model to the user.
- It's important that examples S are close to x because this is what justifies building a linear model: a linear model might be a good approximation of examples around x even when a linear model might not be suitable globally.

FOIL

- FOIL assumes that often when a user asks for an explanation of a classification "why are you predicting \hat{y}?", what she is really interested in is "why are you predicting \hat{y} instead of \hat{y}'", e.g. "why are you saying I don't get a loan, rather than I do get a loan?"
 - It creates a set S, e.g. in the same way as LIME does.
 - Instead of building a linear model from $S \cup \{x\}$, it builds a decision tree.
 - Then it finds the node in the tree that predicts \hat{y} and a nearby node that predicts \hat{y}'.
 - The explanation is the differences in the paths that lead to these two nodes.
- FOIL is one method for finding counterfactuals: a counterfactual explanation of a prediction describes the smallest change to the feature values that changes the prediction.
- There is growing interest in using counterfactuals as explanations; there are many other methods for finding counterfactuals.

In []: