Prediction

Derek Bridge
School of Computer Science and Information Technology
University College Cork

Initialization

```python
In [1]: %reload_ext autoreload
   %autoreload 2
   %matplotlib inline

In [2]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
```

Prediction

- We want to create programs that make predictions
 - (In everyday use, prediction is about the future; we use the word more generally in AI)
- Generically, we refer to such programs as estimators
- There are two main types of prediction, and hence two types of estimator:

In both, we are given a vector \mathbf{x} of feature values that describes some object:

- **Regression** means predicting a target value, which is numeric (real-valued)
 - e.g. given a vector of feature values that describe a house, predict the selling price of the house
- **Classification** means predicting the object's class from a finite set of classes
 - e.g. given a vector of feature values that describe an email, predict whether the email is spam or ham
Notation

- We continue to use \(x \) for an object
- We will use \(y \) for the target value (in regression) or class label (in classification)
- Actually, we will be even more precise:
 - We will use \(\hat{y} \) for the actual target value/class label
 - We will use \(y \) for a predicted target value/class label

There’s more to say about classification

- Classification means predicting an object's class from a finite (and usually small) set of classes
 - We assume we have a finite set of labels, \(C \), one per class
 - Given an object \(x \), our task is to assign one of the labels \(\hat{y} \in C \) to the object.
- We will often use integers for the labels
 - E.g. given an email, a spam filter predicts \(\hat{y} \in \{0, 1\} \), where 0 means ham and 1 means spam
 - But a classifier should not treat these as continuous, e.g. it should never output 0.5
 - Furthermore, where there are more than two labels, we should not assume a relationship between the labels
 - Suppose there are three classes \(\{1, 2, 3\} \)
 - Suppose we are classifying object \(x \) and we happen to know that its actual class label is \(y = 3 \)
 - One classifier predicts \(\hat{y} = 1 \)
 - Another classifier predicts \(\hat{y} = 2 \)
 - Which classifier has done better?

A variation of classification

- Given an object \(x \), a classifier outputs a label, \(\hat{y} \in C \)
- Instead, a classifier could output a probability distribution over the labels \(C \)
 - E.g. given an email \(x \), a spam filter might output \(\langle 0.2, 0.8 \rangle \) meaning \(P(y = \text{ham} \mid x) = 0.2 \) and \(P(y = \text{spam} \mid x) = 0.8 \)
 - The probabilities must sum to 1.
- We can convert such a classifier into a more traditional one by taking the probability distribution and selecting the class with the highest probability:
 \[
 \arg \max_{j \in C} P(\hat{y} \mid x)
 \]
Types of Classification

- We distinguish two types of classification:
 - **Binary classification**, in which there are just two classes, i.e. \(|C| = 2\), e.g. fail/pass, ham/spam, benign/malignant
 - **Multiclass classification**, where there are more than two classes, i.e. \(|C| > 2\), e.g. let's say that a post to a forum or discussion board can be a question, an answer, a clarification or an irrelevance
- In fact, there are even more types of classification, but we will not be studying them further:
 - In **multilabel classification**, the classifier can assign \(x\) to more than one class
 - i.e. it outputs a set of labels, \(\hat{y} \subseteq C\).
 - E.g. consider a movie classifier where the classes are genres, e.g. \(C = \{\text{comedy, action, horror, musical, romance}\}\)
 - The classifier's output for *The Blues Brothers* should be \(\{\text{comedy, action, musical}\}\).
 - Do **not** confuse this with **multiclass** classification
 - In **ordered classification**, there is an *ordering* defined on the classes
 - The ordering matters in measuring the performance of the classifier
 - E.g. consider a classifier that predicts a student's degree class, i.e. \(C = \{\text{Ordinary, 3rd, 2ii, 2i, 1st}\}\)
 - Suppose for student \(x\), the actual class \(y = 1st\)
 - One classifier predicts \(\hat{y} = 2ii\)
 - Another classifier predicts \(\hat{y} = 2i\)
 - Which classifier has done better?

We need to say more about binary classification

- In binary classification, there are two classes
- It is common to refer to one class (the one labelled 0) as the **negative class** and the other (the one labelled 1) as the **positive class**
- It doesn't really matter which is which
 - But, usually, we treat the class we're trying to identify, or the class that requires special action, as the positive class
 - E.g. in spam filtering, ham is the negative class; spam is the positive class
 - What about tumour classification?
- (This terminology is extended to other things too, e.g. we can refer to **negative examples** and **positive examples**).
Class exercises

- Consider:
 - Predicting tomorrow’s rainfall
 - Predicting whether we will have a white Christmas
 - Predicting the sentiment of a tweet (negative, neutral or positive)
 - Predicting a person’s sexual orientation
 - Predicting a person’s opinion of a movie on a rating scale of 1 star (rotten) to 5 stars (fab)

- Answer the following:
 - Which are regression and which classification?
 - If classification, which are binary and which are multiclass?
 - If binary, which is the positive class and which the negative?
- Clustering and classification are easily confused: in both, we ‘assign objects to groups’
- What is the key difference between them?

Building a model: ask an expert

- So how, for example, do we build a regression system that can predict the selling price of your house?
- We ask Ann
 - She’s an auctioneer — an expert at predicting Cork city house prices
 - But we don’t ask her to predict your house price
 - We ask her for a general method for predicting Cork house prices
- She tells us that her rule-of-thumb is that prices start at 25k€ and increase by 1.5k€ for every extra square metre of floor area:
 \[\hat{y} = 25 + 1.5 \times \text{flarea} \]
 - So, she predicts your house (floor area of 114 square metres) will sell for \(\hat{y} = 25 + 1.5 \times 114 = 196 \)k€

Models

- Ann has given us a model
- In very abstract terms, a model is an approximation of some part of reality that enables us to make predictions about that reality
- In very concrete terms for this module, a model is a formula (or function or procedure or set of rules…) that expresses the relationship between the thing being predicted (target value or class) and the features
- (It so happens that Ann’s is a linear model — see future lecture)

```
In [3]: # Ann’s model
def f_ann(flarea):
    return 25 + 1.5 * flarea

In [4]: # Predicting the selling price of your house
f_ann(126)
Out[4]: 214.0
```
In [5]: # Plotting the predictions made by Ann's model
fig = plt.figure()
plt.title("Ann's model")
xvals = np.linspace(0, 500, 2)
plt.plot(xvals, f_ann(xvals))
plt.xlabel("Floor area (sq metres)")
plt.xlim(0, 500)
plt.ylabel("Price (000 euros)")
plt.ylim(0, 1000)
plt.show()

Ben's Model

- We might also ask Ben, another Cork auctioneer, and he might give us a different model, e.g.
 \[\hat{y} = 20 + 50bdrms + 10bdrms^2 \]
- (Ben' model is not a linear model — see future lecture)

In [6]: # Ben's model
def f_ben(bdrms):
 return 20 + 50 * bdrms + 10 * bdrms ** 2

In [7]: # Predicting the selling price of your house
f_ben(3)

Out[7]: 260
In [8]: # Plotting the predictions made by Ben's model
 fig = plt.figure()
 plt.title("Ben's model")
 xvals = np.linspace(0, 10, 10)
 plt.plot(xvals, f_ben(xvals))
 plt.xlabel("Bdrms")
 plt.xlim(0, 10)
 plt.ylabel("Price (000 euros)")
 plt.ylim(0, 1500)
 plt.show()

Which Model is Better?

- Ann's and Ben's models make different predictions
 - Ann predicts your house will sell for $\hat{y} = 25 + 1.5 \times 114 = 196k\text{€}$
 - Ben predicts your house will sell for $\hat{y} = 20 + 50 \times 3 + 10 \times 3^2 = 260k\text{€}$
- So we might ask: which is better?
 - A complicated question — to be explored in this module
 - For now, suppose your house sells for 210000€. Ann's prediction (196000€) is closer than Ben's (260000€), so we have some evidence that Ann's model is better

Building a model: learn from data

- Rather than ask an expert, we want to learn a model from data
- Suppose we collect a dataset of labeled examples
 - Each example describes a house by giving values for the various features
 - But now, also, each example gives the actual selling price of the house
- We take some or all of these examples, call them the training set, and give them to the learning algorithm
- As best it can, the learning algorithm finds a model based on the labeled examples in the training set
Datasets of labeled examples

- As before: \(m \) examples, \(n \) features
- But a labeled example is a pair, comprising a vector of feature values and the value of the target (regression) or the class label (classification)

\[\langle x, y \rangle \]

So a labeled dataset looks like this:

- E.g. regression: features are floor area, bedrooms and bathrooms; target is selling price (thousands of €)
 \[
 \{ \langle 92.9, 3, 175 \rangle, \langle 171.9, 4, 435 \rangle, \langle 79, 3, 85 \rangle \}
 \]

- E.g. classification: features are lecture and lab attendance (%) and CAO points; class labels are 0 = pass, 1 = fail
 \[
 \{ \langle 60, 1 \rangle, \langle 45, 80 \rangle, \langle 90, 350 \rangle \}
 \]

- From a labeled dataset, we can construct a matrix \(X \) and a vector \(y \) as follows:

 \[
 X = \begin{bmatrix}
 x_1^{(1)} & x_2^{(1)} & \ldots & x_n^{(1)} \\
 x_1^{(2)} & x_2^{(2)} & \ldots & x_n^{(2)} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_1^{(m)} & x_2^{(m)} & \ldots & x_n^{(m)} \\
 \end{bmatrix}, \quad y = \begin{bmatrix}
 y^{(1)} \\
 y^{(2)} \\
 \vdots \\
 y^{(m)} \\
 \end{bmatrix}
 \]

 - In the matrix \(X \), rows are examples, columns are features
 - The vector \(y \) gives corresponding target values/class labels
 - E.g.
 \[
 X = \begin{bmatrix}
 92.9 & 3 & 2 \\
 171.9 & 4 & 3 \\
 79 & 3 & 1 \\
 \end{bmatrix}, \quad y = \begin{bmatrix}
 175 \\
 435 \\
 85 \\
 \end{bmatrix}
 \]

 - E.g.
 \[
 X = \begin{bmatrix}
 60 & 45 & 500 \\
 20 & 80 & 350 \\
 90 & 70 & 400 \\
 \end{bmatrix}, \quad y = \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 \end{bmatrix}
 \]
Learning from data

Terminology

- We will say that the algorithm **learns** a model
- We could also say that we are **training** the algorithm on the data
- We could also say that the algorithm **fits** a model to the training set
- We could also call it **function approximation**
Types of Learning in AI

- **Reinforcement learning:**
 - The agent receives rewards (or punishments) after executing actions
 - The rewards (or punishments) act as positive (or negative) reinforcement
 - The agent learns a policy that defines which actions to perform in which situations to maximize reward over time

- **Unsupervised learning:**
 - The agent learns from an unlabeled dataset
 - The goal is to find structure within the dataset
 - Clustering and most forms of dimensionality reduction are examples of unsupervised learning but there are other examples of unsupervised learning (not covered) such as anomaly detection and association rule mining

- **Supervised learning:**
 - The agent learns from a labeled dataset
 - The goal is to generalise from the labeled dataset to learn how to predict target values/class labels when given feature values
 - Learning models for regression and classification are examples of supervised learning

- **Semisupervised learning:**
 - The agent learns from a dataset, only a (small) subset of which is labeled
 - The goal is usually the same as in supervised learning but making use of the unlabeled data to compensate for the low volume of labeled data