
CS4618: Artificial Intelligence I

Path Finding

Derek Bridge
School of Computer Science and Information Technology
University College Cork

Initialization

In [1]: %reload_ext autoreload
%autoreload 2
%matplotlib inline

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Applications of route-planning and path-finding
State space search has many application including cargo loading and automatic assembly, not just toy problems!
But the most obvious of its applications are in route-planning and path-finding

Directions Warehouse picking Delivery routes

Search and rescue Vacuuming & mowing Pathfinding for NPCs

1 of 7

Route planning for road maps
Most obvious graph representation for road maps:

intersections/junctions become nodes of the graph
stretches of road between intersections become its edges

In fact, in addition to intersections/junctions, include extra nodes:
e.g. entrances to, and exits from, car parks, colleges, etc
e.g. any special points along a stretch of road such as start and end-points of bridges & tunnels, toll
plazas, changes of road type or speed limits,…

Node and edges can have extra data stored on them, e.g. distances, speed limits, road type, presence of a
footpath, etc. on edges
But this representation still has problems with turning restrictions such as these:

E.g. the graph fails to show that East-bound traffic cannot turn left

Route planning for road maps
A more sophisticated representation introduces

separate edges for the lanes
additional nodes & edges to represent 'turns'

E.g.

Now it is easy to represent one-way roads (how?) and turning restrictions (how?)

2 of 7

Route planning for road maps
Edge costs

Costs are probably expressed in seconds
Calculated from, e.g.

static data about the edge: distance, road type, etc.
transport type (car, bike, foot)
dynamic data about the edge: traffic conditions, etc.

Heuristics
Straight-line distance ('as the crow flies') never over-estimates
When distances are large enough, must take into account curvature of the Earth

The haversine formula calculates the distance between two points, given their longitude and
latitude

But you must convert this to use same units as used for costs (seconds)

Route planning for road maps
In mobile apps, fast calculation of routes is important
Also, fast re-calculation. Why?
In fact, it might be more important than optimality:

Quickly find two or three good routes, rather than take longer to find the shortest route
One good thing: branching factor is relatively low
For speed-up:

obviously: optimized code, good choice of data structures, fast hardware, preprocessing,…
change the heuristic

one that underestimates but underestimates less, provided it is still cheap-to-compute
or, perhaps, an inadmissible heuristic, especially if it doesn't overestimate too much and is
cheap-to-compute

alternative algorithms, e.g. hierarchical route planning, ALT algorithms, bidirectional ALT algorithms

NPCs in games
In many games, non-player characters (NPCs) are quite dumb

They appear, as if from nowhere, e.g. when the player enters a room
Their actions are scripted

But, we are entering a new era of games where the NPCs will compete/cooperate with players and other NPCs in
much more interesting ways
One skill will be to navigate around the game world, which involves pathfinding and movement

3 of 7

Path finding for NPCs in games
Consider a grid-based game:

the map comprises a grid of tiles (we'll assume 2D only and ignore wormholes, portals, etc.)
character movement is constrained to the grid, axial (horizontal & vertical) and sometimes also
diagonal

Most obvious graph representation for the grid:
obstacle-free tiles become nodes of the graph
edges connect to up to 8 neighbours

E.g.

Nodes can have extra data stored on them, e.g. type of terrain (grass, tarmac, marsh, …)

Edge costs for grids
Simplest: all edges have a constant cost, e.g. 1 (although it might be different for different NPCs)
More sophisticated: axial edges cost, e.g., 1; diagonal edges cost a bit more, e.g., 1.4
Even more sophisticated is to add higher costs to certain edges, which will discourage paths that use these
edges, e.g.:

If tiles have different altitudes, you can have higher edge costs for moving from lower altitude tiles to
higher altitude tiles
If tiles have different terrain types, you can have higher edge costs for moving from, e.g., marsh to
marsh tiles than grass to grass tiles
If tiles can contain dangers (e.g. enemies), you can have higher edge costs near these tiles (and even
modify these costs dynamically if the enemies move) (so-called 'infuence maps')
…

4 of 7

Heuristics for grids
Assume a 2D grid where current tile is and the goal tile is

Euclidean distance (Pythagoras!): straight-line distance

Manhattan distance: counting axial movements

Chebyshev distance: allows for diagonal movements too

…
Whether these are admissible (even in obstacle-free grids) is quite complicated

depends on whether only axial movement is allowed, or axial and diagonal
if both are allowed, depends on whether they have the same or different costs

But, in any case, you might not care too much about optimality
Quickly calculating (and re-calculating)a good route might be better than taking longer to find an optimal
route
Why else might you not want to always find optimal paths for NPCs?
You might even exit the search algorithm early (with only a partial path found) and start executing it.
Why?

Speeding up the search
Obviously: optimized code, good choice of data structures, fast hardware, preprocessing,…
Change the heuristic

one that underestimates but underestimates less, provided it is still cheap-to-compute
or, perhaps, an inadmissible heuristic, especially if it doesn't overestimate too much and is cheap-to-
compute

Prune or carefully order the successors
E.g. in grids, there can be lots of re-exploration unless we include code to avoid it
E.g. in grids, we can devise algorithms that make use of symmetries to reduce work
E.g. assume axial and diagonal costs are the same (to simplify the example)
And assume the previous state was tile A, and the current state is tile B

In this situation, B's successors do not need to include C and D. Why not?
A new algorithm, Jump Point Search, uses this idea recursively during search to achieve massive
speed-ups (especially when there are large obstacle-free areas)
E.g. in grids, there will be lots of ties: when inserting on the agenda an item with same value as an
existing item on the agenda, make sure the new one comes earlier in the queue than the existing one
(Advanced question: Why?)

Change the way you represent the grid as a graph (next slide)

⟨x, y⟩ ⟨ , ⟩x′ y′

h(⟨x, y⟩) = (x − + (y −x′)2 y′)2‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√
h(⟨x, y⟩) = |x − | + |y − |x′ y′

h(⟨x, y⟩) = max(|x − |, |y − |)x′ y′

A∗

f

5 of 7

Different graphs for grids
Our representation has a lot of nodes and edges
Consider instead a graph based only on waypoints

It's possible to define waypoints algorithmically, e.g. based on points that are visible from one another

But you might define them manually instead
('Navigation meshes' are another possibility: nodes are polygons, each comprising several tiles)
These graphs can be much smaller, but there is a problem:

at movement time, the path will need to be converted back into grid-based movement

Continuous maps
In a continuous map, agents can move freely (as long as they avoid the obstacles)

not constrained to moving along roads
not constrained to moving between tiles

E.g.

How do we represent a continuous map as a graph?
Answer: discretize it:

Place a (fine-grained?) grid on it
Place (lots of?) waypoints on it (or a 'navigation mesh')

At movement time, the path (which will comprise linear moves) may need to be smoothed to make it more natural

6 of 7

Concluding remarks
This lecture illustrates something about AI in general

Successful uses of AI don't just depend on clever algorithms
They still depend to a large extent on the human designer finding ways to incorporate domain
knowledge into the solution

Some advice for journalists writing about AI (http://togelius.blogspot.ie/2017/07/some-advice-
for-journalists-writing.html)
"Much of 'artificial intelligence' is actually human ingenuity…[W]hen building a system to solve
a problem, lots of knowledge about the actual problem ('domain knowledge') is included in the
system. This might take the role of providing special inputs to the system, using specially
prepared training data, hand-coding parts of the system or even reformulating the problem so
as to make it easier."

In []:

7 of 7

