CS4618: Artificial Intelligence |

Searching State Spaces

Derek Bridge
School of Computer Science and Information Technology

University College Cork

Initialization

In [1]: %reload_ext autoreload
%autoreload 2
smatplotlib inline

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

State space search

® [f the current state is not a goal state,
® Expand the current state, i.e. generate its successor states

® One successor becomes the new current state
® Others must be kept in case we want to come back to them
O Keep them on an agenda, i.e. a list of unexplored options
® Search strategy determines which state to expand next

A general state space search algorithm

StateSpaceSearch()

® insert start state onto agenda;
® while agendais not empty
m currentState =remove from front of agenda;
® if currentStatesatisfies goal condition
O return the path of actions that led to currentState,

else
O successors = states that result from expanding currentState,

O insert successors onto agenda;
® return fail;

1of4

Search tree

® The parts of the state space that the search algorithm actually visits are made explicit in a search tree
® State space and search tree are different:

B Some search strategies may leave parts of the state space unexplored

® Some search strategies may re-explore parts of the state space
® These ideas will be made clearer in the lecture using these three example state spaces:

Start . Start Start
Goal ‘

Avoiding re-exploration

® Three options, varying in cost and effectiveness:
® Discard any successor that is the same as the current node’s parent
B Discard any successor that is the same as another node on the path
® Discard any successor if it is the same as any previously-generated node
® Class exercise: How effective at avoiding re-exploration are these three options? What do they cost in time &
space?

Search strategy

® Search strategy decides which state to expand next
® Uninformed search strategies:
= No problem-specific heuristic knowledge is used in the decision
m E g. breadth-first; depth-first; least-cost
® Informed search strategies:
® Problem-specific heuristic knowledge is used
m Eg. greedy; A*
® Search strategy is determined by where nodes are added to the agenda

20f4

Breadth-first search

® Treat the agenda as a queue:

B nodes are removed from the front (as always)

® successors are added to the back
® Hence, all nodes at depth i in the search tree will be expanded before any at i + 1
® We will illustrate in the lecture using this state space

Start

Goal

Depth-first search

® Treat the agenda as a stack:
B nodes are removed from the front (as always)
B successors are added to the front
® Hence, it always choses to expand one of the nodes that is at the deepest level of the search tree (it only
expands nodes at a shallower level if the search has hit a dead-end at the deepest level)

Evaluating a search strategy

® Completeness:

® A search strategy is complete if it guarantees to find a solution (path to goal) when there is one
® Class exercise:

B |s breadth-first complete?

® |s depth-first complete?

3of4

4 of 4

Evaluating a search strategy

® Optimality:
® A search strategy is optimal if it guarantees to find the highest-quality solution (least-cost path to goal)
when there is a solution
O i.e. the first solution it finds is the one with lowest-cost
® Class exercise:
® |s breadth-first optimal?
® |s depth-first optimal?

Evaluating a search strategy

® Time-complexity:
® How long does it take to find a solution, in terms of size of state space?
® Worst-case (also best-case and average-case)
® Space-complexity:
® How much memory is needed, in terms of size of state space?
® Worst-case (also best-case and average-case)
® Class exercise: For both breadth-first and depth-first search, work out the time- and space-complexity

In [1:

