
CS4618: Artificial Intelligence I

Searching State Spaces

Derek Bridge
School of Computer Science and Information Technology
University College Cork

Initialization

In [1]: %reload_ext autoreload
%autoreload 2
%matplotlib inline

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

State space search
If the current state is not a goal state,

Expand the current state, i.e. generate its successor states
One successor becomes the new current state
Others must be kept in case we want to come back to them

Keep them on an agenda, i.e. a list of unexplored options
Search strategy determines which state to expand next

A general state space search algorithm
StateSpaceSearch()

insert start state onto ;
while  is not empty

 remove from front of ;
if  satisfies goal condition

return the path of actions that led to ;
else

 states that result from expanding ;
insert  onto ;

return fail;

agenda
agenda

currentState = agenda
currentState

currentState

successors = currentState
successors agenda

1 of 4



Search tree
The parts of the state space that the search algorithm actually visits are made explicit in a search tree
State space and search tree are different:

Some search strategies may leave parts of the state space unexplored
Some search strategies may re-explore parts of the state space

These ideas will be made clearer in the lecture using these three example state spaces:

Avoiding re-exploration
Three options, varying in cost and effectiveness:

Discard any successor that is the same as the current node’s parent
Discard any successor that is the same as another node on the path
Discard any successor if it is the same as any previously-generated node

Class exercise: How effective at avoiding re-exploration are these three options? What do they cost in time &
space?

Search strategy
Search strategy decides which state to expand next
Uninformed search strategies:

No problem-specific heuristic knowledge is used in the decision
E.g. breadth-first; depth-first; least-cost

Informed search strategies:
Problem-specific heuristic knowledge is used
E.g. greedy; 

Search strategy is determined by where nodes are added to the agenda
A∗

2 of 4



Breadth-first search
Treat the agenda as a queue:

nodes are removed from the front (as always)
successors are added to the back

Hence, all nodes at depth  in the search tree will be expanded before any at 
We will illustrate in the lecture using this state space

Depth-first search
Treat the agenda as a stack:

nodes are removed from the front (as always)
successors are added to the front

Hence, it always choses to expand one of the nodes that is at the deepest level of the search tree (it only
expands nodes at a shallower level if the search has hit a dead-end at the deepest level)

Evaluating a search strategy
Completeness:

A search strategy is complete if it guarantees to find a solution (path to goal) when there is one
Class exercise:

Is breadth-first complete?
Is depth-first complete?

i i + 1

3 of 4



Evaluating a search strategy
Optimality:

A search strategy is optimal if it guarantees to find the highest-quality solution (least-cost path to goal)
when there is a solution

i.e. the first solution it finds is the one with lowest-cost
Class exercise:

Is breadth-first optimal?
Is depth-first optimal?

Evaluating a search strategy
Time-complexity:

How long does it take to find a solution, in terms of size of state space?
Worst-case (also best-case and average-case)

Space-complexity:
How much memory is needed, in terms of size of state space?
Worst-case (also best-case and average-case)

Class exercise: For both breadth-first and depth-first search, work out the time- and space-complexity

In [ ]:

4 of 4


