
Multilayer Neural Networks

1 Fully connected, layered, feedforward networks

Networks of TLUs can encode more functions than can single TLUs.

A single TLU cannot encode the exclusive-or function. But two TLUs connected together, the output of the first
feeding into the second, can do this.
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What functions can neural nets compute in general? The answer is: if we place no restrictions on the network architec-
ture, we can represent any function. In particular, if we allow feedback (where the output of one TLU is fed into that
of an ‘earlier’ TLU), then ANNs have full computational power: they can compute all Turing-computable functions.

The full power is often not needed and it’s not always desirable. It can be better to place some restrictions on the
network architecture. (It can simplify the learning algorithms, for example.)

We will look at fully connected, layered, feedforward networks (for which there’s a reasonably good learning algo-
rithm). Here is an example of such a network:

s0

s1

s2

s3

s4

s5

h0

h2

h3

h4

o1

o2

o3

h1
output1

output2

output3

1

• Feedfoward versus recurrent networks

– In feedforward networks, links are unidirectional and there are no cycles. (Technically, they’re DAGs.)

– Recurrent networks have arbitrary topology. In particular, feedback loops are allowed.

• Layered feedforward networks

– The units are arranged in a number of layers. A unit will send activation only to units in the next layer.

– On the left, we see the input units/input layer. These units simply pass activation from the environment to
the next layer. (They are our sensors.)

– On the right, we see the output units/output layer. The activation that these produce is taken as the output
of the network (e.g. to choose an action for a reactive agent).

– In between are the hidden units, arranged in hidden layers.

– The example is a two-layer network. The input layer (the sensors) aren’t counted. (However, some people
do not know this convention, and they would call this a three-layer network.)

• Fully connected, layered, feedforward networks

– Each unit in a layer is connected to every unit in the next layer.

Our description henceforth will be kept simpler by assuming there is only one hidden layer. In general, there could be
several.

Here, by way of an example is a fully-connected, layered, feedforward network for computing exclusive-or:
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2 Implementing ANNs

We saw the code for a single TLU (StandaloneTLU.java). This included a method activate(double[]
s) for taking inputs from sensors and working out the output of the TLU. Perhaps the only significant change that
we need when we come to implement networks of TLUs is to allow TLUs to take their input from the output of other
TLUs, as well as from the sensor. Here’s some code in which a TLU in the output layer takes its input from the output
of TLUs in the hidden layer:
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public double activate()
{ double in = 0.0;

for (int i = 0; i < numOfInputs; i++)
{ inputs[i] = hiddenUnits[i].getOutput();

in += weights[i] * inputs[i];
}
output = g(in);
return output;

}

3 Supervised Learning of ANNs

How on earth would someone come up with an ANN? Consider all the decisions they have to make: the number of
layers; the number of units in each layer; and the weights. (If we assume we’ve used the trick from the previous
lecture, then we don’t need to come up with thresholds.)

Quite simply, ‘programming’ these networks is in general impossible. However, there is an alternative: learning. We
can present to an ANN learning algorithm a set of examples of function inputs and outputs and get it to learn an ANN
that implements the function (or, at least, one quite close to it).

We will still have to decide on the number of hidden layers and the number of units in each layer (the ‘architecture’
or ‘topology’ of the network). And this remains something of an ‘art’. But the automatic learning algorithm can take
care of the weights. We can start with an ANN in which there is a random assignment of weights (usually in the range
[−0.5, 0.5]), and then put the network through a period of training during which the weights will be adjusted.

During the training phase, we will present to the learning algorithm a set of example input vectors and their corre-
sponding correct output vectors (i.e. the outputs we want the ANN to produce for these inputs). The learning algorithm
adjusts the weights in the ANN in those cases when the ANN isn’t currently producing the correct target output.

Any form of learning where the inputs and also their corresponding target outputs can be perceived by the learner is
referred to as supervised learning. Typically, the target outputs will come from some ‘teacher’ (but this could be any
other agent or even the environment itself). This is in contrast to other forms of learning where the target outputs are
not known or not available.

Of course, we don’t really want the ‘teacher’ to have to supply an absolutely comprehensive set of examples (every
possible input and its target output). We want it to be the case that the learner will be able to generalise (to give good
outputs on previously unseen data) if given a sufficiently representative set of training examples.

We follow common practice by first presenting a learning algorithm for a single TLU. Then we explain how to extend
the ideas to apply to a fully connected, layered, feedforward ANN.

4 Learning in TLUs

So we present the learning algorithm with a series of examples: each example consists of an input vector and the
corresponding target output (which, since we have reverted to dealing with TLUs, is simply 0 or 1). The essence of
the learning algorithm is this:

If the actual TLU output is 1 when it should be 0, make each wi smaller by an amount proportional to si.

If the actual TLU output is 0 when it should be 1, make each wi larger by a similar amount.
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We must present the examples to the learning algorithm several times, each time being referred to as an epoch. Why?
How many epochs are needed? Well, you can stop the algorithm when the TLU converges: it correctly predicts all
the examples (or most of them) and the weights are not being changed any more. Alternatively, we might use a fixed
number of epochs, or we might set a time limit on the learning.

How do we update the weights? First, we compute the error:

Err , target − output

Given that target and output can only be 0 or 1, the error can only be 0, 1 or -1. Second, we update each weight:

wi := wi + α × si × Err

α is a constant called the learning rate and will be a real value, 0 < α ≤ 1. (A typical value is around 0.35.)

If tlu is a variable that contains a TLU with randomly-assigned weights, numOfInputs is the number of input lines
coming into this TLU (including the extra one that was used to get rid of the threshold), and examples is a set of
examples, then the learning algorithm is:

for (each epoch, e)
{ /* Within each epoch, we deal with each example in turn.

*/
for (each ex in the set of examples)
{ exampleInput = ex.getInput();

targetOutput = ex.getTargetOutput();
/* Compute the actual output we get for this example input.
*/

output = tlu.activate(exampleInput);
/* Compute error between target and actual output.
*/

err = targetOutput - output;
/* Adjust each incoming weight.
*/

for (int i = 0; i < numOfInputs; i++)
{ tlu.setWeight(i,

tlu.getWeight(i) + theLearningRate * s[i] * err;
}

}
}

By way of an example, imagine we’re trying to train a TLU to compute s1 ∧ s2. Suppose the random weights assigned
at the start of the algorithm are as shown in the left-hand diagram below. Suppose one example is as follows. The
example inputs are 〈1, 1〉. The target output is, of course, 1. The actual output from the TLU shown is 0. (Why?
Because 1 × 0.3 + 1 × 0.1 + 1 ×−0.5 = −0.1 and −0.1 < 0.)

So, the error is 1 − 0 = 1. If we use a learning rate of 0.35, then we update the weights as follows:

ws0
:= 0.3 + 0.35 ∗ 1 ∗ 1 = 0.65

ws1
:= 0.1 + 0.35 ∗ 1 ∗ 1 = 0.45

ws2
:= −0.5 + 0.35 ∗ 1 ∗ 1 = −0.15

After this one example, the TLU is now as per the right-hand diagram.
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We then go on to other examples from the training set and, once these are exhausted, we go through the examples all
over again for the second epoch.

5 What Can a TLU Learn?

We saw that we can design TLUs to compute only certain functions. There’s obviously no point trying to get a TLU
to learn exclusive-or (⊕) or other functions that it cannot compute. But what is the relationship between the set of
functions a TLU can compute and the set we can get it to learn?

Whatever functions a TLU can compute, it can learn to compute.

Of course, for it to learn a specific function requires that it be given a representative enough set of examples. It also
requires that the learning rate, α, not be too large, otherwise a suitable set of weights can be ‘overshot’ (But if α is too
small, learning can be very slow.)

How can we detect whether the TLU that we’ve been training has actually learned the function that we want it to?
In the case of TLUs, we might just be able to do it by inspecting the weights. But, in general, following the training
phase, we subject the TLU to a testing phase to find out what it has learned. We’ll discuss this further after we’ve
looked at learning in fully connected, layered, feedforward ANNs.

Exercise (Past-Exam Question)

This question is about TLUs and neural networks. Throughout, assume that the activation function of the TLUs, g, is
defined as follows:

g(x) ,

{

1 if x ≥ θ

0 otherwise

where θ is the threshold of the TLU.

1. Design a TLU which has two inputs s1 and s2. The inputs can take values of 0 or 1. The TLU should compute
s1 ↓ s2, where ↓ is the NOR operator, i.e. s1 ↓ s2 ≡ ¬(s1 ∨ s2).

2. Your answer to part 1 is to be converted into a TLU that has a threshold of 0 but it has an extra input s0. At what
value will you fix the input s0 and what weight will you use on s0’s input wire to continue to compute s1 ↓ s2?

3. The kind of conversion that you carried out in part 2 is a useful precursor to training a neural net using a learning
algorithm. Why is it useful?

4. Below we have tabulated eight Boolean-valued functions:
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s1 s2 s1 � s2 s1 � s2 s1 � s2 s1 � s2 s1 ⊗ s2 s1 � s2 s1 ⊕ s2 s1 	 s2

0 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Suppose you intend to design eight TLUs, each having two inputs, s1 and s2, that can take values of only 0 or 1.

For how many of the eight functions can such TLUs be designed? Explain your answer convincingly and in
detail. (There is no need to give any actual TLUs.)

5. Here is a fully connected, layered, feedforward neural network:
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What will the output of this network be when the values of its inputs, s1 and s2, are both 1. Show your working.

6. Design a fully connected, layered, feedforward neural network for the following. There are four inputs, each of
which can take a value of 0 or 1. When any two of the inputs are 0 and the other two inputs are 1, the output of
the network is 1. Otherwise the output is 0.
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