
Fuzzy Logic

1 Uncertainty and Vagueness

Uncertainty and vagueness are major challenges in AI. Uncertainty is about degree of belief and it can be handled
mathematically by probability. Vagueness is about degree of truth and it can be handled mathematically by fuzzy
logic.

Our reactive agents (and intelligent agents in general) must be able to deal with both uncertainty and vagueness. For
example, one major source of uncertainty is the unreliability of the sensing equipment. However, we’ll look now at
vagueness and fuzzy logic. Fuzzy logic has been applied with some considerable success to reactive control tasks.

2 Some Motivation: Fuzzy Control

Consider an anti-locking brake system, controlled by a programmable controller. The operation of such a system is
akin to the sense/plan/act cycle. Readings are taken of, e.g., brake temperature and vehicle speed. An action, e.g. a
change in brake pressure, is then selected and executed. The cycle then repeats. The aim is to maintain some system
state or to smoothly change the state of the system in response to changes in the environment.

Traditional control systems typically use differential equations to define responses to sensor values. But this approach
has problems:

• In some cases, solving the complex equations can be too computationally expensive for real-time control;

• In some cases, the effect is a ‘bang-bang’ control regime: actions are repeatedly too drastic and cause overshoot-
ing of desired outcomes;

• In some cases, e.g. for new or ill-understood devices & environments, the equations may not be known yet;
developing them might be years of work; the resulting equations might be difficult to understand.

An alternative is to use a system of fuzzy rules, such as the following:

if brake temperature is warm ∧ vehicle speed is not very fast then brake pressure is slightly decreased

which uses imprecise terms in its condition and action.

Such rules can be cheap to apply, and have been found to give quite smooth control. Most importantly, fuzzy con-
trollers can often be quickly developed. The rules can come from interviewing experts, looking at their manuals, or
observing their actions. Given enough data, the rules can be automatically evolved or learned. The rules are readily
understandable, and therefore more maintainable.

Hybrid approaches, where fuzzy control improves an existing equation-based controller, are also common.

Note that, while our current interest in fuzzy logic is its application in fuzzy control, it has been used for a variety of
purposes throughout AI (although its use is always controversial).

3 Fuzzy Set Theory

Fuzzy control uses fuzzy logic, and fuzzy logic is built on fuzzy set theory. Traditional, ‘non-fuzzy’ sets are sometimes
referred to as crisp sets to distinguish them from fuzzy sets.
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In (crisp) set theory, we have a universe of discourse, U : the collection of all possible objects under consideration. A
(crisp) set, A, is then a collection of objects, drawn from the universe of discourse. Each object in U is either in A or
not in A. More formally, for every set A there is a membership function, fA, which, for every object a in U returns
true or false according to whether a is in A or not.

Example Let U be a collection of students; call them a, b, c, d, and e. Let set C = {a, b, d} be the set of these students
who are studying Computer Science. The membership function for CS, fC , is as follows:

fC(a) = true
fC(b) = true
fC(c) = false
fC(d) = true
fC(e) = false

The idea in fuzzy set theory is that set membership should be a matter of degree, not simply true or false . The key
generalisation is to allow the membership function to return not simply true or false , but a grade of membership,
usually denoted by a real number between 0 (absolutely not a member) and 1 (absolutely a member).

Example The membership function for the fuzzy set T of tall students might be, e.g.:

fT (a) = 0.2
fT (b) = 0.8
fT (c) = 0.0
fT (d) = 1.0
fT (e) = 0.5

This shows that d is definitely tall and c definitely is not. a, b and e have some claims to tallness, e.g. it is half-true to
say that e is tall.

Membership functions for fuzzy sets (especially when the set is concerned with ages, heights or other (continuous)
numeric measurements) are often shown graphically. For example, here are plots of possible membership functions
for person ages:
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We see that the exact shape may vary: it might be bell-shaped, s-shaped or reverse s-shaped. In fact, it is often
convenient computationally to use triangular- or trapezoidal-shaped functions:
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Question What, in fuzzy set theory, would the membership function of the empty set look like?

The definitions of set operations (such as union) need to be extended to cope with fuzzy sets. Let A, A1 and A2 be
fuzzy sets drawn from universe U .

Union A1 ∪ A2 For crisp sets, the union of A1 and A2 is the set of elements that are either in A1 or in A2. For fuzzy
sets, the membership function for the union of A1 and A2, fA1∪A2

, is defined by

fA1∪f2
(a) , max(fA1

(a), fA2
(a))

Intersection A1 ∩ A2 For crisp sets, the intersection of A1 and A2 is the set of elements that are in both A1 and A2.
For fuzzy sets, the membership function for the intersection of A1 and A2, fA1∩A2

, is defined by

fA1∩A2
(a) , min(fA1

(a), fA2
(a))

Complement A′ For crisp sets, the complement of A is the set of elements that are in the universe of discourse but
are not in A. For fuzzy sets, the membership function for the complement of A, fA′ , is defined by

fA′(a) = 1 − fA(a)

Exercise Draw the graph of the membership function for the set that is the union of the sets of young ages and
middle-aged ages. Draw the graph for their intersection too.

There is a whole new set of operations (ones that don’t exist in crisp set theory) called modifiers. These have approxi-
mately the same effect as words and phrases such as “very”, “more or less”, etc. We want the very operator to have
an intensifying effect and the morl (more or less) operator to reduce the intensity. Here are possible definitions:

fvery A(a) , (fA(a))2

fmorl A(a) , (fA(a))
1

2

Exercise Draw the graphs for the set of very young person ages and the set of more or less young person ages.

Much more could be said on this subject (including its extension to fuzzy relations) but we move on now to fuzzy
logic.
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4 Fuzzy Logic

In classical logic, a statement, W , is either true or false . Again, we can use functions to formalise this. The function
we need is called an interpretation function, I. If p represents the statement ‘the ball is red’, then I(p) will return
either true of false .

In fuzzy logic, I can return degrees of truth, typically in the [0, 1] interval. For example, I(p) could be 0.6 (perhaps
if the ball is a reddish-orange colour).

The following connectives are defined in a way that is based on the set theory operations:

I(W1 ∨ W2) , max(I(W1), I(W2))

I(W1 ∧ W2) , min(I(W1), I(W2))

I(¬W ) , 1 − I(W )

There are problems in defining the conditional W1 ⇒ W2 (and hence also the biconditional, W1 ⇔ W2). Around 72
alternative definitions have been proposed. One is

I(W1 ⇒ W2) ,

{

1 if I(W1) ≤ I(W2)
I(W2) otherwise

In classical logic, W1 ⇒ W2 ≡ ¬W1 ∨ W2. But, this equivalence does not hold when using the above definition of
the conditional in fuzzy logic.

We needn’t get too worried about these problems with defining the conditional. In fuzzy control (next lecture), we will
only need conjunction (∧), disjunction (∨) and negation (¬). We will be writing condition-action rules like the ones
we used in production systems, but now the conditions and actions may be fuzzy.

Exercises

1. Suppose U , the universe of discourse is {0, 1, 2, 3, 4, 5}. The graph below shows the membership function for
the fuzzy sets A and B:
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Draw separate graphs that show the membership functions for the following fuzzy sets:

(a) A′

(b) B′

(c) A ∪ B

(d) A ∩ B

(e) (A ∪ B)′
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(f) (A ∩ B)′

2. We have three statements of fuzzy logic, p, q and r. Here are their degrees of truth:

I(p) = 0.2; I(q) = 0.5; I(r) = 0.7

Compute the degrees of truth of the following:

(a) p ∧ q

(b) ¬p ∨ ¬q

(c) ¬(p ∧ q) ∨ r

(d) p ⇒ q (Of the 72 definitions, use the one I gave above!)

(e) ¬p∨ q (Note how the answer to this one is different from the answer to the previous one, which shows that
in fuzzy logic W1 ⇒ W2 is not always equal to ¬W1 ∨ W2.)

(f) (p ⇒ q) ⇒ r
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