
Implementing Reactive Agents using Production
Systems

1 Declarative and Procedural Knowledge

We have chosen to represent the knowledge that our simple-minded agent possesses as rules. As we will see as
we proceed through the course, there are many other ways of representing knowledge. You might legitimately be
wondering why we went to the trouble of using a production system when we could simply have written a short
method in Java to achieve the same effect, e.g. something like:

public void lightSeeking()
{ while (true)

{ s0 = leftSensor.read();
s1 = rightSensor.read();
if (s0 > s1)
{ this.turn(LEFT);
}
else if (s1 > s0)
{ this.turn(RIGHT);
}
else
{ this.move();
}

}
}

The key difference here is between declarative and procedural ways of representing knowledge. The distinction be-
tween the two is blurry, but it can be useful.

Declarative knowledge: Knowledge is specified as statements about the world. But how to use that knowledge to
achieve some task is not given. Instead, some program that is capable of working with that knowledge must be
supplied separately.

In our case, we have the knowledge in the form of rules, and then we must supply the production system
interpreter (i.e. the program that searches for matches, resolves conflicts, etc.) separately.

Procedural knowledge: Control information that is needed to carry out some task is embedded into the knowledge.

On the whole, declarative knowledge is to be preferred:

• It can be used for multiple purposes and in multiple ways. You simply supply a different interpreter.

• It can be more easily changed. Insertions, modifications and deletions are easy. This means that machine
learning becomes more feasible.

Procedural knowledge has the advantage that, being specialised to one task, it can often accomplish that task more
efficiently than would a declarative approach.

Keep in mind that there is no clear-cut distinction. For example, some people would regard our rules as being at least
partially procedural because they specify actions.

We can illustrate the flexibility of rules by considering how we might encode default actions and goals using a produc-
tion system. In both cases, note how little needs to be changed.

1

2 Default Actions in Production Systems

Suppose you have a production system whose conflict resolution strategy is to always choose the first-matching rule.
When devising the rules for your production system, it is conventional for the last rule to have as its condition simply
true :

if true then adefault

So if no other rule (higher in the list) is used, this rule will be used as a last resort. The action in this rule, adefault, will
be some suitable default action to be executed when nothing else is suitable. This may prevent your agent from being
paralysed by inaction.

Question Here again are the rules for the agent from the previous lecture:

if p0 then TURN LEFT
if p1 then TURN RIGHT
if ¬p0 ∧ ¬p1 then MOVE

Under what circumstances did he ‘freeze’?

How would you rewrite him so that he could get himself out of these difficulties?

3 Agents with Goals

At the moment, our agents are always ‘on the go’. At every moment of time, they sense, plan and act. Suppose
instead you want your agent to achieve some goal and then stop.

Question: How would you write your production system to achieve this?

4 Java Implementation of a Production System

As you’ve seen, I’ve written a system in which agents live in grid-like graphics worlds, where they encounter bricks
and other agents. We’ll study enough of this code to allow you to experiment with your own agents. We look most
closely at how the rules in a production system are implemented because this information will be used in the next
lecture.

A class diagram for part of the system:

System
Production Stimulus

Response
Rule1 *

1

1
*

*

Move Turn AND OR

Action

Boolean
Expression

Binary
Expression
Boolean

Unary
Boolean

Expression

NOT

Atom

Proposition

11

21

2



Here’s code for creating a stimulus-response rule that corresponds to if ¬p0 ∧ ¬p1 then MOVE:

StimulusResponseRule r =
new StimulusResponseRule(

new AND(new NOT(new Proposition("p0")),
new NOT(new Proposition("p1"))),

new Move());

In memory, variable r will now contain a reference to a tree-like object:

r

AND

NOT NOT

Proposition Proposition

"p0" "p1"

Rule
Response
Stimulus

Move

3

Question: What rule is being represented by the following tree? (The picture suppresses some of the details that
cluttered up the previous one).

OR

NOT

p1p0

SRRule

Move

How would you create it using the Java constructors from above?

4



A production system is a list of rules. But, in memory, lists are also stored in node-and-pointer tree-like structures
(assuming they’re linked-lists rather than arrays). So a production system might be stored in a tree as follows:

SRRule

p0 TURN
LEFT

SRRule

p1 TURN
RIGHT

SRRule

AND

NOT NOT

p0 p1

MOVE

null

5

There is no need to understand the rest of the system, which is concerned with organising the simulation in the grid-
like world. For those of you who are interested, its class diagram follows. (Even this diagram is a simplification: I
have excluded the numerous GUI and listener classes!)

Agent
Your
Agent

LightSeeking

Cell
*1

World

Phys

Procedural
Agent

1

*

Brick Agent

Object

Production
System*

Production
System
Agent 1

Your
AgentLight

Flitting

Questions

1. Consider the wall-following agent demonstrated in the lecture. Design its production system.

Suppose the agent has 8 touch sensors and these have been used to give 8 propositions 〈p0, . . . , p7〉. Variable
p0 contains true if there’s an object directly in front of the agent; p1 is true if there’s an object in front but to
the right of the agent; p2 is true if there’s an object directly to the left of the agent; and so on, as shown by this
diagram:

p0 p1

p2

p3p4p5

p7

p6

The actions are Move and Turn. Move moves the agent one pace forward in the direction that it is facing.
For Turn, we supply two arguments. The first argument is either LEFT or RIGHT. The second argument is
an integer that indicates how many 45◦ rotations make up the turn. For example, Turn(RIGHT, 2) is a turn
action that turns this agent 90 degrees to the right (e.g. if it was facing North, it is now facing East).

6



2. Our agent is unable to handle ‘tight dead-end corridors’, i.e. a dead-end path between two walls that is less than
two cells wide:

Your agent can cope with this... but not with this.

Indeed, no purely reactive agent can handle these. Why not?

5 Appendix: Propositional Logic

For those who need it, here is a quick recap on some immediately relevant parts of Propositional Logic.

In Propositional Logic, we’re interested in analysing statements about the world, and these statements will be either
true or false . (This is a major simplifying assumption made in Propositional Logic: it excludes the possibility of
statements that are, e.g., only partly true. To handle partly-true statements, you have to abandon Propositional Logic
and turn to one of the many other varieties of logic, e.g. Fuzzy Logic — covered later in this course.)

For conciseness, we do not write statements such as ‘There is an obstacle in front of the agent’ or ‘The amount of light
entering the left eye exceeds the amount entering the right eye’. Instead, we give these statements short names such as
p, p0, p1, . . . , q, q0, q1, . . . We refer to these as propositional symbols.

We can construct more complex statements from simpler statements by combining propositional symbols into larger
expressions using operators that we call connectives. We can work out whether the larger expression is true or
false from the truth-values of the propositions contained within that larger expression.

We will look at the five main connectives.

Negation Given any expression W , we can construct another expression, the negation of W , which we write

¬W

The truth/falsity of ¬W can be computed from the truth/falsity of W as follows:

W ¬W

true false
false true

This corresponds loosely to uses of the word ‘not’ in English.

Conjunction Any two expressions, W1 and W2, can be combined to form a compound expression called the conjunc-
tion of W1 and W2, which is written

W1 ∧ W2

W1 and W2 are called the conjuncts.

The truth/falsity of W1 ∧ W2 can be computed from the truth/falsity of W1 and W2:

7

W1 W2 W1 ∧ W2

true true true
true false false
false true false
false false false

This corresponds loosely to uses of the word ‘and’ in English.

Disjunction Any two expressions, W1 and W2, can be combined to form a compound expression called the disjunc-
tion of W1 and W2, which is written

W1 ∨ W2

W1 and W2 are called the disjuncts.

W1 W2 W1 ∨ W2

true true true
true false true
false true true
false false false

This corresponds loosely to uses of the word ‘or’ in English. However, it is more precisely ‘inclusive-or’ since
it covers the idea of ‘W1 or W2 or both’.

There is another connective, referred to as ‘exclusive-or’, sometimes written as W1 ⊕W2, whose truth/falsity is
computed as follows:

W1 W2 W1 ⊕ W2

true true false
true false true
false true true
false false false

This covers the idea of ‘W1 or W2 but not both’.

Conditional Any two expressions, W1 and W2, can be combined to form a compound expression called a conditional,
which is written

W1 ⇒ W2

W1 is called the antecedent and W2 is called the consequent.

W1 W2 W1 ⇒ W2

true true true
true false false
false true true
false false true

It is often said that this corresponds loosely to uses of ‘if . . . then’ in English. However, the correspondence is
not strong and can be misleading.

Production rules (if W then ai) and conditionals (W1 ⇒ W2) are completely different beasts. A produc-
tion rule associates a condition, W (an expression of Propositional Logic), with an action, ai. A conditional
connects two expressions of Propositional Logic, W1 and W2, to make a larger statement about the world.

Bi conditional Any two expressions, W1 and W2, can be combined to form a compound expression called a bicondi-
tional, which is written

W1 ⇔ W2

8



W1 W2 W1 ⇔ W2

true true true
true false false
false true false
false false true

This corresponds loosely to uses of ‘if and only if’ in English. However, again the correspondence is not strong
and can be misleading.

Now, if your agent knows that p1 is true , p2 is false and p3 is true , it can use what we learned above to compute the
truth-value of more complex expressions such as p1 ∧ (p2 ⇒ p3). (It comes out true .)

Although an agent will probably never want to do this, there are some occasions when logicians want to compute the
truth value of an expression for all possible assignments of true /false to its propositional symbols. When we do this,
we show the results as a truth-table. Here’s an example:

p1 p2 p3 p1 ∧ (p2 ⇒ p3)
true true true true
true true false false
true false true true
true false false true
false true true false
false true false false
false false true false
false false false false

If there are n distinct propositional symbols, then there are 2n different rows in the truth-table. (Here n = 3 so there
are 23 = 8 rows.)

Inspection of a truth-table allows us to say things about an expression.

• An expression is satisfiable if there is at least one row in the truth-table where the expression comes out true .

• An expression is unsatisfiable if there is no row where the expression comes out true .

• An expression is valid if every row comes out true .

• Two expressions, W1 and W2, are logically equivalent, written W1 ≡ W2, if they come out the same in each
row.

There is another way of showing that two expressions are logically equivalent, and that is algebraically. For this, you
make use of a number of laws. Laws are familiar from arithmetic. For example, you know that 3 + 4 = 4 + 3 and, in
general, that W1 + W2 always gives the same answer as W2 + W1.

Here are the laws of Propositional Logic.

For any expressions W , W1, W2 and W3, . . .

Commutativity of ∧ and ∨

W1 ∧ W2 ≡ W2 ∧ W1

W1 ∨ W2 ≡ W2 ∨ W1

9

Associativity of ∧ and ∨

(W1 ∧ W2) ∧ W3 ≡ W1 ∧ (W2 ∧ W3)

(W1 ∨ W2) ∨ W3 ≡ W1 ∨ (W2 ∨ W3)

Distributivity of ∧ over ∨, and of ∨ over ∧

W1 ∧ (W2 ∨ W3) ≡ (W1 ∧ W2) ∨ (W1 ∧ W3)

W1 ∨ (W2 ∧ W3) ≡ (W1 ∨ W2) ∧ (W1 ∨ W3)

De Morgan’s laws

¬(W1 ∧ W2) ≡ ¬W1 ∨ ¬W2

¬(W1 ∨ W2) ≡ ¬W1 ∧ ¬W2

Idempotence of ∧ and ∨

W ∧ W ≡ W

W ∨ W ≡ W

Identities

true ∧ W ≡ W

false ∧ W ≡ false

true ∨ W ≡ true

false ∨ W ≡ W

Involution

¬¬W ≡ W

Complement laws

W ∧ ¬W ≡ false

W ∨ ¬W ≡ true

¬true ≡ false

¬false ≡ true

Definition of biconditional

W1 ⇔ W2 ≡ (W1 ⇒ W2) ∧ (W2 ⇒ W1)

10



Definition of conditional

W1 ⇒ W2 ≡ ¬W1 ∨ W2

So, we can use these laws to show, for example that p ∨ q ≡ ¬(¬p ∧ ¬q) Typically, we pick one of the expressions
and use the laws to transform it into the other expression. Here I have picked the right-hand side expression and
transformed it, in two steps, into the left-hand side expression:

¬(¬p ∧ ¬q) ≡ ¬¬(p ∨ q) (by De Morgan’s law)
≡ p ∨ q (by Involution)

(If only they were all as easy as that. . . Now tackle the exercises!)

Appendix Exercises

1. Draw truth tables for the following expressions and hence state whether each is valid, satisfiable and/or unsatis-
fiable.

(a) (p ⇒ q) ⇒ (p ∧ q)

(b) (p ⇒ q) ∨ ¬(p ⇔ ¬q)

(c) p ∧ (q ⇔ ¬q)

(d) p ∨ ¬(p ∧ q)

(e) p ∨ ¬(p ∧ p)

(f) ¬(¬(p ∧ q) ∧ ¬(p ∨ q))

(g) ((p ∧ ¬q) ∨ (¬p ∧ q)) ⇒ r

2. Here are some valid expressions:
p ⇒ p

p ∨ ¬p

¬(p ∧ ¬p)

((p1 ⇒ p2) ∧ (p2 ⇒ p3)) ⇒ (p1 ⇒ p3)

Here’s an unsatisfiable expression:
p ∧ ¬p

(You can optionally confirm that these expressions are valid/unsatisfiable by drawing truth-tables. This would
be good practice for you.)

(a) If an expression is valid, then its negation is unsatisfiable. Why?

(b) If an expression is unsatisfiable, then its negation is valid. Why?

(c) Hence, answer the following without drawing truth-tables.

i. Is ¬(p ∨ ¬p) valid? Is it satisfiable or unsatisfiable?
ii. Is ¬(p ⇒ p) valid? Is it satisfiable or unsatisfiable?

3. Use the laws of the Propositional Logic to show that the following equivalences hold.

(a) ¬(W1 ⇒ W2) ≡ W1 ∧ ¬W2

(b) W1 ⇒ W2 ≡ ¬W2 ⇒ ¬W1

(c) (W1 ∧ W2) ⇒ W3 ≡ W1 ⇒ (W2 ⇒ W3)

11


