
Logical Representations

1 Motivation

We’re looking at agents that think ahead. We’ve seen that this is a process of simulation, but also of search. And we’ve
spent some time looking at efficiency issues. But we’ve done all of this while using iconic representations of the states.
And the problem with these representations is that, for agents that live in ‘rich’ environments (e.g. physical buildings
or complex virtual worlds such as the Internet), iconic representations are often not expressive enough. They do not
lend themselves well to expressing the following kinds of knowledge about states of the world:

• General laws and other statements that apply across many objects. E.g.:

– All trees are obstacles to lawn mowers.

– All unsupported objects fall to the ground.

– If you change the location of any container, then any objects in the container change location too.

• Indefinite statements (e.g. disjunctions, negative statements that say what isn’t true without saying what is true,
and existentially quantified statements that fail to identify the objects involved). E.g.:

– The key is either on the desk or in the drawer.

– There is no tree in front of the lawn mower.

– Some of the books are on the table.

It’s very hard to come up with iconic representations to handle these, and in those cases where iconic representations
are possible, they are often far from concise.

By contrast, logical representations can be expressive enough. What’s more, logical representations allow inference
of properties of the world that have not been stated explicitly.

So, in future lectures, we’re going to use logical representations in our agent. States of the world will be represented
by sets of statements in logic. The preconditions and effects of operators will also be represented using logic. And the
goal condition will be expressed in logic too.

But, additionally, we will be able to express background knowledge about the world in logic too (e.g. general laws,
commonsense knowledge about objects and their properties, and so on.) We will store this knowledge in a knowledge
base. Then, to see whether an operator’s precondition is true in some state, or to see whether the goal condition is true,
might no longer be simply a case of matching the two; it might be necessary to do some reasoning (inference) to see
whether the precondition/goal is true.

But before we get on to any of that, we start with an introduction to the syntax and semantics of logic.

2 What is a Logic?

I use the words logic and knowledge representation language (KRL) interchangeably. Every logic (or KRL) has:

Syntax: The legitimate symbols of the language and the rules that define the legitimate configurations of these sym-
bols.

Semantics: Rules that define the meanings of the symbols, the meanings of configurations of symbols and certain
relationships that hold between different configurations (e.g. whether one contradicts another).
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Proof theory: Rules that define the inferences that can be drawn. (These rules use syntactic operations only.)

There are numerous logics (KRLs), many of them invented by AI researchers. They may differ in their expressiveness
but also in the efficiency of their proof theory. (Generally, the more expressive, the less efficient.) AI researchers will
choose to use a logic that gives them the best trade-off of expressiveness and efficiency they need for the task in hand.

We’re going to look at one particular logic, first-order predicate logic. (Other ways of referring to this logic are:
FOPL, first-order logic, FOL, first-order predicate calculus and FOPC.) This is the main choice in AI. It is maximally
expressive. However:

• Some concepts may not be expressed especially concisely with this logic. Hence, AI researchers and others
have invented more exotic logics to express these concepts more concisely. But statements in these more exotic
logics can always be ‘reified’ into FOPL.

• Reasoning with FOPL may not always be especially efficient so, wherever possible, AI researchers try to manage
with sublanguages of FOPL, where the full expressiveness is not exploited.

3 The Syntax of FOPL

Statements in FOPL are called well-formed formulae (wffs). To define wffs, we must define terms and atoms.

3.1 Terms

1. Every constant symbol is a term, e.g. a, b, c, clyde, gertie

2. Every variable is a term, e.g. x, y, z, x0, x1, x2

3. For any function symbol F of arity n and any n terms T1, T2, . . . , Tn, then

F (T1, T2, . . . , Tn)

is a term. E.g. if f is a function symbol of arity 1 and g is a function symbol of arity 2, then f(a), g(b, c), g(f(a), c)
and g(f(f(a)), x) are terms.

4. Nothing else is a term.

3.2 Atoms

1. For any predicate symbol P of arity n and any n terms T1, T2, . . . , Tn, then

P (T1, T2, . . . , Tn)

is an atom. E.g. if p and elephant are predicate symbols of arity 1, and q and likes are predicate symbols of arity
2, then p(a), elephant(clyde), q(a, f(a)) and likes(clyde, gertie) are atoms.

2. Nothing else is an atom.

Note that predicate symbols, function symbols, variables and constant symbols should be drawn from disjoint sets to
avoid confusion.
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3.3 Well-Formed Formulae (wffs)

1. Every atom is a wff.

2. For any variable X and any wff W , (∀XW ) and (∃XW ) are wffs. They are referred to as quantified wffs.
(∀XW ) is said to be universally quantified; (∃XW ) is said to be existentially quantified.

3. For any wffs W , W1 and W2, the following are also wffs: (¬W ) (negation), (W1∧W2) (conjunction), (W1∨W2)
(disjunction), (W1 ⇒ W2) (conditional) and (W1 ⇔ W2) (biconditional).

4. Nothing else is a wff.

E.g. the following are wffs: elephant(clyde), ¬likes(clyde, gertie), elephant(clyde) ∨ likes(clyde, gertie) and
∀x(p(x) ⇒ (q(b, c) ∧ q(f(a), x))).

While rules 2 and 3 above introduce parentheses around wffs, we will only write them when they are helpful for
disambiguation purposes. In wffs where we can do without them, we won’t write them.

Question.

a is a constant symbol
s is a unary function symbol
u is a binary function symbol
e is a unary predicate symbol
g is a binary predicate symbol

Which of these are wffs?

1. ∀x e(x)

2. ∃y(g(a, y) ∧ e(x))

3. ∀x∃y(g(x, a))

4. ∀x∃y(g(x, a) ∨ g(y, x))

5. g(s(a, a), a)

6. e(u(a, s(a))) ⇒ g(a, a)

7. ∃x(u(a, x) ∨ s(x))

8. ∀x(e(x) ∨ e(s(x)))

9. ¬(e(x) ∧ e(s(x)))

10. ∀x e(s(a))

11. g(a, e(a))

12. ∀x(g(u(x, x), s(x)) ∨ g(s(a), u(a, a))
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4 Quantifier Scope

The scope of a quantifier (∀, ∃) is the subwff to which the quantifier applies. With plenty of parentheses, the scope will
be apparent. An occurrence of a variable in a wff is bound if it falls within the scope of a quantifier for that variable.
Otherwise, that occurrence of the variable is free.

For example:

• ∃x(p(x)) ∨ (q ⇒ ∀y(r(x, y)))
the scope of ∃x is p(x)
the scope of ∀y is r(x, y)
the first occurrence of x is bound; the second is free
the only occurrence of y is bound.

• ∃x(p(x) ∨ (q ⇒ ∀y(r(x, y))))
the scope of ∃x is p(x) ∨ (q ⇒ ∀y(r(x, y)))
the scope of ∀y is r(x, y)
all occurrences of x and y are bound.

What happens if there aren’t enough parentheses? Different books use different conventions, so be careful. I’ll try to
put enough parentheses in, but if I don’t, then go for the narrowest scope possible. E.g. in

∃x p(x) ∨ (q ⇒ ∀y r(x, y))

the scope of x is p(x) and that of y is r(x, y).

In this course, we will not write wffs that have free variables.

5 More Terminology

Unfortunately, some further terminology will be useful:

• In a conjunction, W1 ∧ W2, W1 and W2 are called the conjuncts.

• In a disjunction, W1 ∨ W2, W1 and W2 are called the disjuncts.

• In a conditional, W1 ⇒ W2, W1 is called the antecedent and W2 is called the consequent.

• We know what an atom is: a predicate symbols with its arguments (each of which is a term). A literal is an atom
or a negated atom, e.g. likes(clyde, gertie), ¬likes(clyde, gertie).

• We use the word ground to refer to an expression with no variables in it. So we talk of a ground term (e.g.
f(a, g(b))), a ground atom (e.g. p(a, f(a))), a ground literal (e.g. p(a, f(a)) and ¬p(a, f(a))), and a ground
wff (e.g. p(a, f(a) ∧ q(b, c))).
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Exercise

In these questions, p and q are binary predicate symbols, f is a unary function symbol, g is a binary function symbol,
and a and b are constant symbols. x, y, z and subscripted versions of these will be used as variables.

1. Indicate, by writing Legal or Illegal, which of the following are well-formed formulae of first-order predicate
logic. Where you think they are Illegal, briefly explain why.

(a) ∀x(p(a, f(f(g(a, b)))) ⇒ ∃y p(a, f(f(g(b, a)))))

(b) ∀x∀y(p(a, b) ∨ ∀x(q(f(a), f(b)), p(b, a)))

(c) ∀x∀y(p(a, b) ∨ ∀x(q(f(a, b)) ∧ p(b, a)))

2. Indicate, by writing Yes or No whether the following wffs of first-order predicate logic contain free variables.
Where you think that they do, also indicate which variable occurrences within the wffs are free.

(a) ∀x(p(a, f(x)) ∧ p(x, b)) ⇒ p(x, f(g(b, x)))

(b) ∃y(q(y, y) ⇒ ((∃x q(y, x)) ∨ ∀x q(x, y)))

(c) ∀x(∃x(∀x(∃x (p(x, x) ⇒ q(x, x)) ∧ p(x, x))) ∨ q(x, x)) ⇔ ¬p(x, x)
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