
Demonstration of Robotic Repair for
Wireless Networks

Thuy T. Truong, Rodolfo V. Bisol, James Giller, Hugh Whelan, Kenneth N. Brown and Cormac J. Sreenan
CTVR, Department of Computer Science

University College Cork, Ireland
Email: {t.truong, r.bisol, j.giller, h.whelan, k.brown, cjs}@cs.ucc.ie

Abstract—This paper describes our demonstration of a net-
work repair problem where a robot bridges a gap between two
disconnected wireless nodes by searching for a good position
and moving there to forward data between the two nodes. It
serves to show the potential for our published solutions for
automated network repair. A simple Adhoc network consists
of two Intel Galileo Gen 2 nodes exchanging messages and an
NXT Mindstorm robot with another Galileo on board healing the
network connection between the two Galileos in the case the two
get disconnected. The demo showcases a solution that employs
mobile agents to serve as relays to bridge the connectivity gaps
in the wireless network.

I. INTRODUCTION

Many applications for wireless networks will be in set-
tings where network damage can be expected to occur, e.g.
battlefield sensing, volcano monitoring, fire detection, etc. In
addition, many remotely operated wireless sensor nodes are
powered by batteries or renewable sources, and so nodes may
fail as batteries deplete. The loss of nodes might cause network
partitioning, thus leading to longer delivery delays and/or lost
packets. To overcome node failure and to restore network
connectivity, network repair should be initiated where we must
place new nodes in the environment to restore connectivity
to the network. In our prior published work ([1], [2] [3],
[4]) we presented solutions for automated repair of damaged
wireless sensor networks and in this demonstration we show
the potential for healing a small network.

The goal of robotic network repair is to restore network
connectivity for a partitioned wireless network. A robot agent
will be deployed to discover network damage, RF environment
characteristics, and physical access constraints, and run algo-
rithms for optimisation of radio equipment use, network ser-
vice quality, and physical deployment plans. These algorithms
will guide the robot to go to specific locations to populate new
nodes in order to restore the network connectivity. This paper
demonstrates a scenario where a robot identifies connection
problems and then moves into a strategic position to bridge
the gap between two disconnected nodes. This robot will act
as a relay to forward data between the two nodes.

II. SYSTEM DESCRIPTION

The scenario is based on two Intel Galileos (Generation
2) [5] that are set to be in the same Adhoc network and
communicate wirelessly. Incidents (e.g. physical obstructions)
might occur during the transmission between the two Galileos,

and this could block the wireless signals. When the signal is
blocked, the robot will search for a location to reconnect them.
Figure 1 shows the described scenario.

The NXT robot equipped with a Galileo board
to increase processing power and memory to
run planning algorithms.

WiFi

Two Galileos communicate with each other

An incident occurs and breaks the network.
A robot comes in to re-connect the two Galileos.

A tin mimics
an obstacle

Fig. 1: A robot is healing the connectivity in an Adhoc
network.

In order to test the communication, Galileo node 1 (G1)
is attached with a display monitor (Figure 2) while Galileo
node 2 (G2) is attached with a sound sensor (Figure 3). G2
will sample ambient sound and transmit the data (soundValue)
at a fixed sampling rate to G1. Upon receiving the messages
from G2, G1 processes the data and displays the results on the
screen (Figure 2).

G1 is responsible for monitoring the condition of the radio
link, and for determining whether or not the link is of the
required quality. When the link is down, G1 sends a request
message (REQ message) to a robot, asking it to come and heal978-1-4673-7331-9/15/$31.00 c© 2015 IEEE

the connection, and when the link is up again, G1 will send a
retreat message (RET message) to the robot so that the robot
knows to draw back to its starting location.

Fig. 2: Galileo G1 is attached with a display monitor. Upon
reception of messages, G1 shows the received data on the
screen.

Fig. 3: Galileo G2 is attached with a sound sensor. G2 samples
ambient sound and transmits the data at a fixed sampling rate
to G1.

In this demo, we use an NXT Mindstorm robot for the
actions. The robot will be equipped with a third Galileo Gen
2 (GR). This Galileo acts as the ’brain’ of the robot. The
Galileo is used to determine whether or not the robot is in a
location which has connection with both G1 and G2, and if
not, where the robot should go next to find such a location. It
is also responsible for establishing a connection between two
disconnected nodes. Figures 4 shows the Intel Galileo Gen 2 on
the top and the NXT Mindstorm robot at the bottom. The robot

Intel Galileo (gen 2)

NXT Mindstorm robot
with Galileo on board

Fig. 4: Intel Galileo Gen 2 and an NXT Mindstorm Robot.

starts at a place (a starting point) where it can hear a message
from G1 and waits for the request message. When it hears
a REQ message from G1, it will turn on the proxy-arp and
set up suitable parameters for the forwarding. GR calculates
the shortest path to a target and controls the robot to move
to the target, checking IP connectivity to both G1 and G2 on
the way. The robot will stop at a location and start forwarding
packets if it has connection to both Galileos; otherwise, it will
search for different locations. When the robot hears a RET
message from G1, it will turn off the proxy-arp and calculate
the shortest path from current location to the starting point and
then move there. At this point, the communication between the
two Galileos (G1 and G2) is back to normal.

III. IMPLEMENTATION

We have four main programs running on three different
Galileos (G1, G2 and GR) and the NXT Mindstorm robot.
The three Galileos must be set in the same Adhoc network
(see the script in Listing 1). The programs running on each
device are as follows.

Listing 1: Setting up the Adhoc network.
// setting up the Adhoc network
#! /bin/bash
iwconfig wlan0 mode Ad-hoc
iwconfig wlan0 essid MyWiFi
ifup wlan0
ifconfig wlan0 192.168.2.x netmask

255.255.255.0 up

• At node G1: a C program (g1 communication.c) lis-
tens to the communication, detecting link up/down
from G2, and sends REQUEST/RETREAT messages
upon the link’s condition has changed. This node also
runs a Python script (g1 display.py) to display the
received sound values received from G2.

• At node G2: A Python script (g2 data.py) is run to
receive the sound values from a sound sensor, and
then send these values to G1.

• At node GR: a C program (gr program.c) will listen
to the REQUEST/RETREAT messages from G1. This
program upon receives a REQUEST message, it will
execute a script to turn on the proxy arp and set up all
necessary parameters for forwarding data (Listing 2),
then it searches for a location which has connection
to both G1 and G2. GR will send a target location
to the robot which will move to the location. For
simplicity, we input a number of target locations to
GR. The path from the current location to the new
target location is calculated by A* search [6]. When
GR receives a RETREAT message indicating that the
direct connection between G1 and G2 is now up again,
GR also uses A* search to calculate the path from its
location to the starting location. The path will be sent
to the robot and the robot will move to the stating
location.

• At the NXT robot: The robot will run nxt controller
program. This program is written in Java and uses
the LeJOS NXJ API [7]. It uses FourWayGridMesh
to create a map geometry (a grid of nodes where
spacing between the grid nodes and clearance around
map geometry can be specified). This map is used for
all navigation. The robot is attached with an ultrasonic
sensor and we use RangeFeatureDetector to detect
objects. For navigation, we implement a Differen-
tialPilot object to control a robot to traverse a path (a
sequence of waypoints) and OdometryPoseProvider to
keep track of the robot’s pose. The robot will follow
the path (sent by GR). However, at each waypoint, it
stops and looks for obstacles and updates the map if
necessary. If no obstacle has been detected, the robot
moves to the next waypoint. Otherwise, it sends the
obstacle’s location to GR which will decide what to
do next (changing the current path or recalculating a
new plan).

The communication between the Galileo (GR) and the
NXT Mindstorm Controller is straightforward with the API
developed for the project [8].

Listing 2: Turning on/off the proxy-arp and forwarding feature.
// The proxy-arp and forwarding features.
#! /bin/bash
sysctl -w net.ipv4.conf.wlan0.proxy_arp=1|0
sysctl -w

net.ipv4.conf.wlan0.proxy_arp_pvlan=1|0
sysctl -w net.ipv4.ip_forward=1|0
sysctl -w net.ipv4.ip_nonlocal_bind=1|0

IV. CONCLUSION

This demo demonstrates a scenario in the robotic network
repair for disaster response where a robot agent is deployed
to heal the connectivity between the two disconnected nodes
in the network. In this scenario, the agent runs an A* static
path finding algorithm to search for a location where it can
stay and forward data between the two nodes, acting like a
relay, and moves back to its starting location where the direct
connection between the two is up again.

Future work includes a larger scale of network and an agent
which has an ability to pick up and drop nodes. This agent
will run more sophisticated algorithms to find the positions
for dropping new nodes in order to heal the network con-
nectivity, as presented in our earlier papers. Future work also
considers state-of-the-art path finding algorithms for dynamic
environment.

SPACE AND/OR OTHER EQUIPMENT-SPECIFIC
REQUIREMENTS

Our demonstration will require a space of 2m x 1.5m area.
We have all the equipment that we need.

ACKNOWLEDGMENT

This project is funded by the SFI Centre CTVR
(10/CE/I1853).

We would like to acknowledge the support of Intel Ireland
in providing the Intel Galileo boards.

REFERENCES

[1] T. T. Truong, K. N. Brown, and C. J. Sreenan, “Integration of node
deployment and path planning in restoring network connectivity,” in
The 29th Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSig), 2011.

[2] ——, “Restoring wireless sensor network connectivity in damaged
environments.” in International Workshop on Cooperative Robots and
Sensor Networks (RoboSense), 2012.

[3] ——, “Repairing wireless sensor network connectivity with mobility and
hop-count constraints,” in ADHOC-NOW, 2013.

[4] ——, “Autonomous discovery and repair of damage in wireless sensor
networks,” in 38th Annual IEEE Conference on Local Computer Net-
works, Sydney, 2013, 2013, pp. 450–458.

[5] “Intel galileo generation 2 datasheet,” http://www.intel.com/content/
www/us/en/embedded/products/galileo/galileo-g2-datasheet.html.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on In Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[7] “Nxj technology,” http://www.lejos.org/nxj.php.
[8] “Robotic network repair,” http://www.ucc.ie/en/misl/research/current/

ctvr intel/.

