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We introduce ER-MAC, a novel hybrid MAC protocol for emergency response wireless sen-
sor networks. It tackles the most important emergency response requirements, such as
autonomous switching from energy-efficient normal monitoring to emergency monitoring
to cope with heavy traffic, robust adaptation to changes in the topology, packet prioritisa-
tion and fairness support. ER-MAC is designed as a hybrid of the TDMA and CSMA
approaches, giving it the flexibility to adapt to traffic and topology changes. It adopts a
TDMA approach to schedule collision-free slots. Nodes wake up for their scheduled slots,
but otherwise switch into power-saving sleep mode. When an emergency occurs, nodes
that participate in the emergency monitoring change their MAC behaviour by allowing
contention in TDMA slots to achieve high delivery ratio and low latency. In its operation,
ER-MAC prioritises high priority packets and sacrifices the delivery ratio and latency of
the low priority ones. ER-MAC also guarantees fairness over the packets’ sources and offers
a synchronised and loose slot structure to allow nodes to join or leave the network. Simu-
lations in ns-2 show the superiority of ER-MAC over Z-MAC, a state-of-the art hybrid MAC
protocol, with higher delivery ratio, lower latency, and lower energy consumption. When a
cluster of nodes in the network detects fire, nodes with ER-MAC deliver twice as many high
priority emergency packets and four times faster than Z-MAC. This is achieved by ER-MAC
with only one fifth as much energy as Z-MAC.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSNs) for emergency appli-
cations, such as fire, flood and volcano monitoring, must be
traffic and topology adaptive. The communication protocol
can be delay tolerant during normal monitoring and
designed for energy efficiency. However, when an emer-
gency event occurs, energy efficiency is less important
than high packet delivery ratio and low latency, and the
communication protocol should adapt in response. The
protocol must also be able to prioritise high priority pack-
ets, as they normally contain important sensed data and
require timely delivery. In addition, the protocol must sup-
port fairness over the packets’ sources. Fairness is impor-
tant when a hazard occurs, so the sink can receive
complete information from all sensor nodes in the network
to monitor the spread of the hazard.

Some traffic and topology adaptive Medium Access
Control (MAC) protocols have been designed. S-MAC [1],
T-MAC [2], B-MAC [3] and X-MAC [4] are contention-based
protocols that adapt to both traffic and topology changes,
but suffer from collisions, idle listening and overhearing.
Another contention-based protocol that satisfies the objec-
tives for emergency response is MaxMAC [5]. However,
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this protocol does not support packet prioritisation and
and does not guarantee fairness. Hybrid MAC protocols
such as Z-MAC [6], Funneling-MAC [7] and BurstMAC [8]
can adapt to traffic and topology changes as well as guaran-
tee fairness, but they do not support packet prioritisation.

In this paper, we propose ER-MAC, a hybrid MAC proto-
col for emergency response WSNs. While our scenario
assumption is the fire monitoring in buildings, this proto-
col is also useful in a range of WSN emergency applica-
tions. The contributions of this paper are:

� ER-MAC allows contention in TDMA slots to cope with
large volumes of traffic. This scheme trades energy effi-
ciency for higher delivery ratio and lower latency.
� ER-MAC maintains two priority queues to separate high

priority packets from low priority packets.
� ER-MAC support fairness so the sink can receive com-

plete information from all sensor nodes in the network.
� ER-MAC offers a synchronised and loose slot structure,

where nodes can modify their schedules locally. This
allows nodes to join or leave the network easily.
� Simulation results validate ER-MAC’s performance,

which outperforms Z-MAC [6] with higher delivery
ratio and lower latency at low power consumption.

The remainder of this paper is organised as follows. In
Section 3, we review the related work on traffic and topol-
ogy adaptive MAC protocols. We formulate the problem
definition in Section 2. We present the proposed ER-MAC
protocol in Section 4. We show our simulation results in
Section 5. Simulation results validate the performance of
ER-MAC, which outperforms Z-MAC [6], a state-of-the-art
hybrid MAC protocol, with higher delivery ratio and lower
latency at low energy consumption. Section 6 concludes
the paper. Parts of this work were presented in [9,10].
2. Problem definition

In this section, we describe some assumptions for the
network and identify the requirements for our MAC
protocol.
2.1. Assumptions

We assume a pre-deployed WSN for fire emergency that
has a connected finite set of sensor nodes and one or more
sinks, which are static. We also assume that there are two
types of packets: high priority packets and low priority
packets. The priority of a packet is determined based on its
content. For example, data from temperature sensors can
be tagged as high priority, while light measurements are
considered as low priority. As high priority packets are more
important than the low priority ones, they must be delivered
first either in normal or emergency monitoring.

In ‘‘fire emergency situation’’, a combination of sensors,
such as smoke, temperature and CO [11], ION and CO [12],
can collaborate to detect the presence of fire when its sen-
sor reading is above a specified threshold. In this hazard
situation, the WSN must be able to assist fire fighters by
dynamically providing important information such as the
location of the fire, the estimation of the spread of the fire,
as well as evacuation routes [13] to both evacuees and the
fire fighters.

We assume two different network situations: no-fire
and in-fire. No-fire is the normal situation where the com-
munication is delay-tolerant and must be energy-efficient
to prolong the network lifetime. When a sensor node or a
group of sensor nodes senses fire, it changes the MAC
behaviour to emergency mode autonomously. The com-
munication of in-fire nodes is not delay-tolerant and
energy efficiency is not as important as achieving high
delivery ratio and low latency. However, the rest of the
network that is not involved in the fire monitoring must
be energy-efficient.

2.2. Requirements for MAC

When designing the MAC protocol for emergency
response, there are several important factors that have to
be taken into account:

1. Traffic load of the network depends on the reporting
frequency of the sensor nodes. It is light during normal
monitoring, but increases significantly when an emer-
gency occurs and may be unbalanced. The MAC proto-
col is expected to offer reliable delivery when the
traffic load increases. That is, when the WSN generates
more traffic, its performance does not deteriorate.

2. Energy efficiency is one of the most critical factors for
WSN applications. The lower the energy consumed by
each node, the longer the WSN can perform its mission.
Therefore, during normal day-to-day monitoring, the
network must be energy-efficient to prolong its life-
time. However, energy efficiency can be sacrificed for
low latency and high delivery ratio during emergency.

3. Successful communication of the WSN not only
requires a robust and reliable communication protocol
to transport the important messages to the sink, but
also depends on delivery latency. Normal monitoring
is delay-tolerant, but emergency monitoring is not, as
high priority packets need timely delivery at the sink.

4. The MAC protocol has to achieve high delivery ratio in
both normal and emergency situations.

5. Detection delay must be bounded, so any messages,
especially the emergency ones, can reach the sink
within predictable duration.

According to these requirements, the MAC protocol
must be energy-efficient when the network performs nor-
mal monitoring, has low packet latency and high packet
delivery ratio when the network monitors a hazard, adapts
to very heavy traffic and topology changes, prioritises high
priority packets and has fair packet deliveries. Since none
of the existing MAC protocols reviewed in Section 3 are
designed for emergency response, none of them address
all of our MAC protocol requirements. Specifically, none
of them try to address both packet prioritisation and fair-
ness issues at the same time. Hence, we design ER-MAC
that satisfies all of these design criteria. Packet prioritisa-
tion is necessary during emergency response to prioritise
high priority packets, which are more important than the
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low priority ones. Fairness is important when a hazard occurs,
so the sink can receive complete information from all sensor
nodes in the network and monitor the spread of the hazard.

3. Related work

Many MAC protocols have been designed for WSNs.
Below, we present a selection of protocols that have rele-
vance to our problem, i.e. traffic and topology adaptive
during emergency monitoring. Based on the mechanisms
to access the medium for data transmission, we follow
the common classification for the MAC protocols: conten-
tion-based, schedule-based and hybrid that combines the
features of both contention-based and schedule-based pro-
tocols. In Table 1, we compare all important issues in MAC
protocol design for emergency response WSNs, which
include the main objectives of the protocols, such as deliv-
ery rate or throughput, delivery latency of packet transmis-
sions and energy efficiency, as well as the ability to adapt
to traffic and topology changes, the availability of the
design criteria to prioritise high priority packets and to
support fairness. A MAC protocol is fair if all nodes have
opportunity to access the channel for data transmissions
and therefore the sink can receive complete information
from all sensor nodes in the network.

A common contention-based MAC protocol is the Car-
rier Sense Multiple Access (CSMA) protocol. Even though
contention-based protocols are popular due to their flexi-
bility to adapt to changes in node density easily, they can-
not cope well when the traffic load increases. Protocols
such as S-MAC [1], T-MAC [2] and TA-MAC [2] suffer from
periodic sleep of each node, while B-MAC [3], WiseMAC
[14] and X-MAC [4] use preambles before data transmis-
sions. Most contention-based protocols sacrifice fairness
by letting a node who has more data get more time to
access the channel. However, B-MAC and X-MAC utilise
random backoff to access the channel.
Table 1
Comparison of existing MAC protocols.

Protocols Main objectives Traffic adaptab

Contention-based
S-MAC [1] # energy Medium
T-MAC [2] # energy Medium
B-MAC [3] # energy Medium
WiseMAC [14] # energy Medium
TA-MAC [15] " delivery, # latency Medium
X-MAC [4] # energy, # latency Medium
MaxMAC [5] # energy, " delivery, # latency Good

Schedule-based
TRAMA [16] # energy Medium
FLAMA [17] # energy Medium
VTS [18] bounded latency Medium

Hybrid
Z-MAC [6] " throughput Good
PMAC [19] # energy, " throughput Good
Funneling-MAC [7] " throughput Good
Crankshaft [20] # energy Medium
RRMAC [21] " delivery, # latency Medium
EB-MAC [8] " delivery, # latency Medium
BurstMAC [22] # overhead, " throughput Good
i-MAC [23] # latency Medium
Time-Division Multiple Access (TDMA) is a schedule-
based MAC protocol that controls the access to the channel
by scheduling when a node should transmit, receive, or
sleep to conserve energy. Schedule-based protocols sup-
port fairness by scheduling when a node can get access
to the channel. Since the inability to maintain the schedule
when the traffic and topology changes are major problems
of this kind of protocol, TRAMA [16] and FLAMA [17] utilise
CSMA periods to allow new nodes to join the network,
while VTS [18] adaptively adjusts superframe length
according to the number of nodes in range. To cope with
heavy traffic, nodes of TRAMA and FLAMA release their
unused slots, while VTS reduces the sleep interval.

Among all existing MAC protocols that we review in this
paper, only MaxMAC [5] satisfies the objectives for emer-
gency response WSNs, i.e. energy-efficient during light
traffic load, has high delivery rate and low latency when
the load increases. MaxMAC also has ability to adapt to
traffic and topology changes. However, this protocol does
not support packet prioritisation and and does not guaran-
tee fairness. When the traffic load is light, MaxMAC
behaves like WiseMAC [14] and it changes to pure CSMA
when the load is heavy. Both WiseMAC and CSMA do not
guarantee fairness because nodes with lots of data domi-
nate the transmissions. Besides MaxMAC, BurstMAC [22]
can be utilised for emergency response as it is designed
for event-triggered applications with correlated traffic
bursts. It has low overhead and high throughput because
traffic is handled using multiple radio channels. Even
though BurstMAC guarantees fairness, it does not support
packet prioritisation.

Judging solely from the ability to adapt to traffic and
topology changes, besides MaxMAC and BurstMAC, only
Z-MAC [6] and Funneling-MAC [7] have these capabilities.
While Z-MAC supports fairness, Funneling-MAC only guar-
antees fairness in the region closer to the sink. Moreover,
neither of them distinguish high and low priority packets.
ility Topology adaptability Packet priority Fairness

Good No No
Good No No
Good No Medium
Good No No
Good No No
Good No Medium
Good No No

Good No Yes
Good No Yes
Good No Yes

Good No Yes
Medium No Yes
Good No Medium
Good No Medium
Good No Yes
Good No No
Good No Yes
Good No Medium
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We identify a gap in the research literature for a MAC pro-
tocol that satisfies all of the requirements, i.e. minimises
energy consumption when the traffic load is light, has high
delivery rate and low latency when the traffic load
increases, adapts to traffic fluctuations and topology
changes, supports packet prioritisation and has fair packet
deliveries in both normal and emergency situations. Our
novel MAC protocol in this paper is designed to satisfy all
of these criteria.
4. ER-MAC protocol design

The main functions of ER-MAC are to:

1. establish a data gathering tree with a sink as the
root of the tree and retrieve neighbourhood connec-
tivity (topology discovery),

2. establish nodes’ schedules (TDMA slot assignment),
3. manage local time synchronisation to minimise

clock drifts,
4. manage two priority queues for different priority

packets,
5. respond to emergency events by changing MAC

behaviour (MAC prioritisation) to cope with large
volume of traffic, and

6. manage the network when the topology changes.

ER-MAC initially communicates using the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) with
a random backoff mechanism to avoid collision, where
each transmission follows the sequence of Request-To-
Send (RTS)/Clear-To-Send (CTS)/DATA/ACK. During the
startup phase, the data gathering tree and TDMA schedules
for exclusive communication among nodes are created. We
integrate routing functions into ER-MAC because even
though it is less flexible [3], it is known to be more efficient
in a network protocol design for WSNs [24]. Firstly, it can
improve energy efficiency by eliminating the use of unnec-
essary protocol overheads at both MAC and routing layers.
Secondly, it can improve resource management by sharing
resources between the two layers. In the data gathering
tree, every node (except the sink) has one parent node
and every non-leaf node (including the sink) has one or
more children. The TDMA schedules enable each node to
send its own data and forward its descendants’ data to
its parent in collision-free slots. Each node also has a spe-
cial slot to broadcast a synchronisation message or any
messages to its children. Besides contention-free slots,
ER-MAC has a contention period at the end of each frame
to support the addition of new nodes.

ER-MAC uses two queues for two kinds of packets: high
and low priority packets. The low priority packets are
transmitted only if the high priority queue is empty. Inside
a queue, packets are ordered based on their slack. That is,
the time remaining until the packet deadline expires. The
deadline is assigned by the WSN application to specify
the desired bound on the end-to-end latency and is initial-
ised by a source node. When a queue is full, the packet
with the shortest slack is dropped because it most likely
to miss its deadline.
With the normal mode of ER-MAC, a node only wakes
up to transmit and receive messages in its scheduled time
slots, and spends most of its lifetime in sleep mode to con-
serve energy. However, when an emergency event occurs,
nodes that are affected by the hazard change their MAC
to emergency mode. In the emergency mode, ER-MAC
allows nodes within a one-hop neighbourhood to contend
for a slot if they have priority data to be sent and if the
schedule does not conflict with their two-hop neighbours’
schedules. In the contention, the owner of the slot has
higher priority to use its own slot than the non-owner of
the slot, because it can transmit a packet immediately if
it has a high priority packet to send. Furthermore, during
an emergency, a node that has changed its MAC to emer-
gency mode will wake up in the beginning of each TDMA
slot for possible reception of packets.

4.1. Topology discovery

During the initial startup phase, the sink initiates the tree
construction using a simple flooding mechanism. Our pro-
cess is similar to the hop tree configuration of the Periodic,
Event-driven and Query-based (PEQ) routing protocol [25]
and the level discovery phase of the Timing-sync Protocol
for Sensor Networks (TPSN) [26]. However, in our context,
the goal of the topology discovery is not only to setup a rout-
ing tree, but also to find neighbours and to track changes in
the tree. Topology discovery is only performed once during
the initial startup phase as nodes with ER-MAC can modify
their schedules locally during the network lifetime.

The sink generates a TOPOLOGY_DISCOVERY message,
which consists of:

1. src_ID is the sender of the message,
2. hop_count stores the number of hops to reach the

sink,
3. new_parent_id stores the new parent ID of a node, and
4. old_parent_id stores a node’s previous parent ID.

The format of a TOPOLOGY_DISCOVERY message is
depicted in Fig. 1. This message is broadcast by a node to
find its prospective children, as well as a reply to its parent
and a notification to its previous parent when it wants to
change parent. A node replies to its new parent, so the par-
ent can add it to its children list. When choosing a new par-
ent, which has shorter hop count to the sink, the node has
to inform its previous parent to remove it from the parent’s
children list. Fig. 2 illustrates a tree built for data gathering
in a network of six nodes. A node has to record its parent ID
because it will be used as the next hop destination in every
packet transmission toward the sink. A node also needs to
maintain a children list, so if it does not receive any mes-
sages from a particular child, it may know that the child
is dead. We will discuss dead nodes later in Section 4.7.

The sink initialises hop_count as zero and leaves both
new_parent_id and old_parent_id as undefined. It broad-
casts the message to its neighbours within its transmission
range. In this phase, each node records the number of hop
counts to the sink, its parent ID, a list of its children and its
one-hop neighbour list. Communications among nodes
during this phase use CSMA/CA with random-access to



type src_ID hop_count new_parent_id old_parent_idField

Field size (bytes) 1 2 2 2 2

Fig. 1. TOPOLOGY_DISCOVERY packet format.

1

2

3

4 5

6

Sink

parent-child communication

one-hop communication

Fig. 2. A data gathering tree of six nodes.
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avoid collisions, because the TDMA schedules for exclusive
communication have not been created yet.

Fig. 3 shows the message exchange between a node, its
parent, its child (ren) and a new parent during the topology
discovery. Note that we do not show message overhearing
in this figure because we want to focus the illustration on
messages received and broadcast by a node. When a node
receives its first TOPOLOGY_DISCOVERY message, it sets
the sender of the message as its parent, increments the
hop_count by one and sets it as its hop count to the sink.
The node then stores its parent ID in new_parent_id, sets
old_parent_id as undefined, waits for a random amount of
time and re-broadcasts the message. If the node has
already received a TOPOLOGY_DISCOVERY message before,
it compares the new message’s hop_count with its current
hop count. If the new message’s hop_count incremented by
one is less than its hop count, it updates its parent ID and
its hop count value. Then, it stores the new parent ID in the
message’s new_parent_id, the previous parent ID in
old_parent_id, waits for a random amount of time and re-
broadcasts the message. Otherwise, if the new message’s
hop_count incremented by one is greater or equal to its
hop count, the node ignores and does not re-broadcast
the message.

Upon receiving a TOPOLOGY_DISCOVERY message, a
node also checks the message’s new_parent_id and
1. TOPOLOGY_D

node x's
new parent

node x's
parent

2. T

3. PARENT

4. TOPOLOGY_DISCOVERY

5. T

6. OLD_PAREN

7. PARENT_ACK

Fig. 3. Message exchange in
old_parent_id. If new_parent_id is the same as the node’s
ID, it adds the sender’s ID to its list of children. If the node’s
ID is the same as old_parent_id, it removes the sender’s ID
from its list of children.

For reliability, a parent node replies to its children with
a PARENT_ACK message to confirm that each child has been
added to its children list. If a node does not receive a PAR-
ENT_ACK message after broadcasting a TOPOLOGY_DISCOV-
ERY message for a certain period of time (user parameter),
it re-broadcasts the message. The node keeps broadcasting
the TOPOLOGY_DISCOVERY message until it receives a
PARENT_ACK message or exceeds the number of maximum
retransmission. In another case, if a node updates its par-
ent ID and its hop count value, it also needs a reply from
its old parent after re-broadcasting the TOPOLOGY_DISCOV-
ERY message. The old parent replies to the node with an
OLD_PARENT_ACK message to inform the node that it has
been removed from the children list. If the node does not
receive the OLD_PARENT_ACK message, it will re-broadcast
the TOPOLOGY_DISCOVERY message. The OLD_PARENT_ACK
message helps keep the children list up to date. If the chil-
dren list is not updated, the old parent may waste energy
in idle listening, tries to receive some packets from the
child for several data gathering cycles before deciding to
remove it from the list. The node will keep broadcasting
the TOPOLOGY_DISCOVERY message until it receives
the PARENT_ACK and the OLD_PARENT_ACK messages, or
exceeds the number of maximum retransmission.

During the topology discovery phase, a node may over-
hear transmissions from other nodes within its transmis-
sion range. The node records the senders of the messages
as its one-hop neighbours in the one-hop neighbour list.
This phase ends when all nodes in the network have
already received the TOPOLOGY_DISCOVERY message.
When this phase ends, each node knows the number of
hops to reach the sink, its parent, the children list and
the one-hop neighbour list. The pseudocode for topology
discovery is given in Algorithm 1. The worst case
ISCOVERY

node x node x's
child(ren)

OPOLOGY_DISCOVERY

_ACK

OPOLOGY_DISCOVERY

T_ACK

topology discovery.
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performance of this algorithm is Oðmn2Þ, where m is the
maximum retransmission and n is the number of nodes
in the network.

Algorithm 1. Topology Discovery.
4.2. TDMA slot assignment

During this phase, nodes perform slot assignment and
exchange schedules, so no two nodes within a two-hop
neighbourhood use the same slot. If two nodes are two hops
away from each other and have the same time slot, their
transmissions may collide at a node that is one hop away
from both of them. At the end of this phase, each node
maintains its own schedule, as well as its one-hop and
two-hop neighbours’ schedules to avoid schedule conflict.
Our TDMA slot assignment follows a bottom-up approach,
where a leaf node (a node with no children) starts the slot
assignment. Our purpose of starting the slot assignment
from the leaf nodes is to have transmission schedules that
can support message flow toward the sink. During the
TDMA slot assignment phase, all communications that are
used to schedule conflict-free slots still use CSMA/CA.

Fig. 4 shows the message exchange between a node, its
parent and its two-hop neighbourhood during the TDMA
slot assignment. A node deems itself as a leaf node if it
has no children after broadcasting TOPOLOGY_DISCOVERY
messages for a certain period of time. It selects its own
time slot to send data to its parent. A leaf node always
selects the smallest available slot. It then generates a
SCHEDULE_ANNOUNCEMENT message, appends its sche-
dule (the ID of the slot) and broadcasts the message to
its one-hop neighbours. Nodes in its one-hop neighbour-
hood then re-broadcast this message to the two-hop
neighbours.
When a node receives a SCHEDULE_ANNOUNCEMENT
message, it copies the schedule into its one-hop neigh-
bours’ schedules if the sender is its direct neighbour. Other-
wise, the schedule is copied into the two-hop neighbours’
schedules. Nodes that receive SCHEDULE_ANNOUNCEMENT
messages from the sender’s one-hop neighbours know that
they are two hops away from the sender. Every node within
a two-hop neighbourhood of the message’s sender checks if
there is a possible conflict between its own schedule and
the newly announced schedule. If it happens to be a con-
flict, the node generates a SCHEDULE_CONFLICT message,
appends its schedule to the message and sends it back to
the sender of the SCHEDULE_ANNOUNCEMENT message.
When the sender of SCHEDULE_ANNOUNCEMENT receives
the SCHEDULE_CONFLICT message, it updates the conflict
schedule in either its one-hop neighbours’ schedules or its
two-hop neighbours’ schedules, depends on the origin of
the SCHEDULE_CONFLICT message. Then, it re-assigns the
schedule and broadcasts a new SCHEDULE_ANNOUNCE-
MENT message to its two-hop neighbourhood.

Keeping in mind that collisions on the channel exist
during this random-access period, we take into account
lost and duplicate messages. Because the SCHEDULE_CON-
FLICT message may be lost during transmission, we make
other neighbours that receive the SCHEDULE_ANNOUNCE-
MENT message send SCHEDULE_NOT_CONFLICT messages
to the sender of SCHEDULE_ANNOUNCEMENT if their sched-
ules do not conflict. In order to reduce further collisions,
the SCHEDULE_ANNOUNCEMENT sender saves a list of
neighbours’ ID whom it receives SCHEDULE_NOT_CONFLICT
messages from and appends this list to the
SCHEDULE_ANNOUNCEMENT message. Neighbours do not
send SCHEDULE_NOT_CONFLICT messages if they are in
the list. The sender of SCHEDULE_ANNOUNCEMENT is
convinced that its schedule does not conflict with its



1. SCHEDULE_ANNOUNCEMENT

node x's
parent node x node x's

one-hop neighbor(s)
node x's

two-hop neighbor(s)

3. SCHEDULE_CONFLICT/
    SCHEDULE_NOT_CONFLICT

2. SCHEDULE_ANNOUNCEMENT

4. SCHEDULE_CONFLICT/
    SCHEDULE_NOT_CONFLICT5. SCHEDULE_CONFLICT/

    SCHEDULE_NOT_CONFLICT

9. PARENT_ACK

8. SCHEDULE_NOTIFICATION

6. SCHEDULE_ANNOUNCEMENT
7. SCHEDULE_ANNOUNCEMENT

Fig. 4. Message exchange in TDMA slot assignment.

type src_ID dest_ID neighbour_level slot_listField

Field size (bytes) 1 2 2 2 2 x num_slot

highest_slot neighbour_list

2 2 x num_neighbour

Fig. 5. Schedule packet format.
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two-hop neighbours’ schedules if it receives no more
SCHEDULE_NOT_CONFLICT messages from its two-hop
neighbourhood after broadcasting SCHEDULE_ANNOUNCE-
MENT messages several times. The node then sends its
assigned schedule in a SCHEDULE_NOTIFICATION message
directly to its parent. The parent acknowledges the recep-
tion of this message with PARENT_ACK.

Fig. 5 illustrates the format of a message that is used to
exchange schedules, i.e. SCHEDULE_ANNOUNCEMENT,
SCHEDULE_CONFLICT, SCHEDULE_NOT_CONFLICT and
SCHEDULE_NOTIFICATION. A schedule packet consists of:

1. src_ID is the sender of the message,
2. dest_ID is broadcast if used by SCHEDULE_

ANNOUNCEMENT, the destination’s ID if used by
SCHEDULE_CONFLICT and SCHEDULE_NOT_CONFLICT,
the parent’s ID if used by SCHEDULE_NOTI-FICATION,

3. neighbour_level specifies whether a node is in
one-hop or two-hop neighbourhood of the sender
of SCHEDULE_ANNOUNCEMENT,

4. slot_list records the schedule,
5. highest_slot specifies the TDMA frame length, and
6. neighbour_list is a list of neighbours’ ID.
1

2

3

4 5

6

Sink

parent-child communication

one-hop communication

[0]

[1]

[1]

[2]

[3, 4, 5, 6]

[7, 8, 9]

[10]

transmit slot(s)[...]

Fig. 6. ER-MAC nodes’ transmit schedules.
We introduce an idea of broadcast slot, so a node can
send a SYNCHRONISATION message to synchronise its chil-
dren. A non-leaf node (except the sink) waits until all of its
children inform it of their schedules before assigning:

1. one unicast slot to send its own data,
2. several unicast slots to forward its descendants’

data, and
3. a broadcast slot to synchronise its children.

A node assigns a slot to itself by selecting the smallest
available slot which is not used within its two-hop neigh-
bourhood. This means the same slot can be used by two
nodes that are separated by more than two hops away.
The node also assigns several slots that are equal to the
number of descendants it has to forward its descendants’
data. For each forwarding slot, the node selects the small-
est available collision-free slot. In addition, the node also
selects a special broadcast slot to synchronise its children.
This assigned schedule is then informed to the two-hop
neighbourhood.

Nodes execute the slot assignment until
SCHEDULE_NOTIFICATION reaches the sink. The slot assign-
ment phase ends when the sink receives SCHEDULE_NOTIFI-
CATION messages from all of its direct children and assigns
a broadcast slot to synchronise them. Fig. 6 illustrates
assigned transmit slots in a data gathering tree of six nodes.

The sink switches the communication mode to TDMA
by sending the first SYNCHRONISATION message to all of
its children, together with the information about the TDMA
frame length. The purpose of propagating the TDMA frame
length is to allow nodes in the network to keep the period
of one TDMA frame length up to date. When a child
receives the SYNCHRONISATION message, it switches its
communication mode to TDMA and synchronises its chil-
dren using its special broadcast slot. When all leaf nodes
in the network receive a SYNCHRONISATION message, the
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whole network is switched to TDMA mode, synchronised,
and each node in the network knows the exact duration
of one TDMA frame. The pseudocode for TDMA slot assign-
ment is given in Algorithm 2. The worst case performance
of this algorithm is Oðd2nÞ, where d is the maximum size of
a two-hop neighbourhood and n is the number of nodes in
the network.

Algorithm 2. TDMA Slot Assignment.
4.3. Local time synchronisation

Time synchronisation is important in MAC protocols
that adopt the schedule-based mechanism because nodes
that have the same schedules for communication need to
be active at the same time to transmit and receive mes-
sages. If the synchronisation messages are sent too often,
they will incur a large amount of protocol overhead. If they
are sent rarely, nodes will experience a large clock drift
[27,28].

We design ER-MAC with a local time synchronisation.
Note that during the topology discovery of ER-MAC, each
node discovers its parent and its children. Then, during
the TDMA slot assignment, each node is assigned a special
broadcast slot for synchronisation purposes. ER-MAC man-
ages the local time synchronisation using a parent–chil-
dren broadcast synchronisation, which is similar to the
root-neighbours synchronisation of Flooding Time Syn-
chronisation Protocol (FTSP) [29]. This simple mechanism
is sufficient for our approach because each child only needs
to have the same clock as its parent to ensure that the par-
ent is in receive mode when it starts transmission and vice
versa.
In the synchronisation slot, a parent broadcasts a SYN-
CHRONISATION message, which consists of:

1. src_ID is the parent’s ID.
2. current_slot informs the current slot number to

allow nodes that are not synchronised, such as
new nodes, to synchronise themselves when they
overhear this message.

3. highest_slot is the highest number of contention-free
slot, that informs the TDMA frame length to allow
nodes in the network to keep the period of one
TDMA frame length up to date.

4. clock that informs the parent’s clock to help children
to synchronise their clock.

5. hop_count is the parent’s hop count to the sink. This
information helps a new node to select its prospec-
tive parent by choosing a parent node with the low-
est hop count to the sink.

The format of a SYNCHRONISATION message is shown in
Fig. 7.

In ER-MAC, the local time synchronisation is performed
once by each node that has child (ren) in each data gather-
ing cycle to minimise clock drift. If a network has n nodes,
there will be less than n SYNCHRONISATION messages sent
during one data gathering cycle period because leaf nodes
do not send these messages. This amount of overhead is
fair and fixed regardless of the traffic rate. This scheme is
more efficient than the scheme that requires a network-
wide synchronisation before several contention-free slots,
which is adopted by RRMAC [21]. There is also a traffic-
based synchronisation, which is adopted by PMAC [19]
and Z-MAC [6]. In the traffic-based synchronisation, each
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Fig. 7. SYNCHRONISATION packet format.
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node sends one synchronisation message according to the
traffic rate in the network. With PMAC, a node sleeps for
several time frames when there is no traffic in the network.
It only sends a synchronisation message when it wakes up.
With Z-MAC, a node sends a synchronisation message after
sending 100 data packets. Compared to the traffic-based
scheme, ER-MAC has more synchronisation overhead if
the traffic load is light. However, the traffic-based scheme
incurs large clock drift because of infrequent synchronisa-
tion. Additionally, if the traffic load is heavy, which is
expected during an emergency monitoring, ER-MAC has
less overhead. In the case of synchronisation error, an ER-
MAC node can turn on its radio to overhear its neighbours’
SYNCHRONISATION messages.

4.4. Priority queue

ER-MAC uses two queues to separate high priority from
low priority packets. This multiple-queue system for sen-
sor networks has been suggested in [30–32]. In our imple-
mentation of the priority queue, a packet is ordered based
on its slack, i.e. the time remaining until the global packet
deadline expires and is part of the packet header [33]. The
format of ER-MAC’s data packet is shown in Fig. 8. The
deadline is assigned by the WSN application to specify
the desired bound on the end-to-end latency. A source
node, which generates a data packet, initialises the slack
with a deadline. The slack is updated at each hop by sub-
tracting the queuing and transmission delays from it. To
measure the queuing delay, a packet is timestamped when
it is enqueued and dequeued. The queueing delay is the
time difference between the enqueue and dequeue time.
Then, to measure the transmission delay, a packet is time-
stamped when it is transmitted by a sender and received
by a receiver. When a packet is re-transmitted, the slack
is updated. The transmission delay is the time difference
between the transmission time and the arrival time of a
packet, given that the sender and receiver are locally
synchronised.
We put the packet with the shortest slack in the front of
the queue. Therefore, the shorter the slack, the sooner the
packet should be transmitted. The rule of getting packets
out of the queue is the high priority packets are transmit-
ted first until the high priority queue is empty. If the high
priority queue is empty, the packet in the front of the low
priority queue is transmitted. A packet may be enqueued
in a full queue. If this situation happens, we drop a packet
with the shortest slack because it is most likely to miss its
deadline and we assume that a packet that misses its dead-
line is useless. The consequence of this technique, how-
ever, is that messages from leaf nodes are dropped more
frequently than others.

We also modify the implementation of the priority
queue by considering fairness over the packets’ sources,
so the sink can have a balance of information from all sen-
sor nodes. When the reporting frequency increases, a node
may have lots of its own data in the queue. If the node
always takes a packet from the head of the queue, it may
happen that the node sends its own generated data more
than its descendants’ data. So, we modify our priority
queue to transmit one packet from each descendant during
one data gathering cycle period. We use an array, where
the indexes correspond to nodes’ ID, to record sources
whose packets have been forwarded. We mark cell i in
the array if node i’s packet is dequeued. This array is reset
every data gathering cycle. To dequeue a packet, we search
through the queue to find a packet whose source has not
been marked in the array. If such a packet exists, it will
be dequeued and the source’s cell is marked. If one packet
from every descendant has been forwarded, we take the
packet from the head of the queue. This approach, how-
ever, has search time equivalent to the length of the queue
in the worst case, because we may need to search the
queue to the end for each transmitted packet. The pseudo-
code for this technique is presented in Algorithm 3.

Algorithm 3. Fair Dequeue
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4.5. MAC prioritisation

The ER-MAC frame consists of contention-free slots
with duration tS each and a contention period with dura-
tion tC as depicted in Fig. 9. In each contention-free slot,
except for the synchronisation slot, there are sub slots
t0; t1; t2 and t3, which only appear in emergency mode for
contention. Note that in the emergency mode, the period
of tS � ðt0 þ t1 þ t2 þ t3Þ is sufficient to carry a packet and
a sub slot is big enough to carry a MAC header (a source,
a destination and a flag). However, the sub slots are not
used in the normal mode, where a sender occupies a slot
from the beginning of the slot and sleeps after transmitting
a packet or at the end of the slot. We include a contention
period at the end of each frame to support addition of new
nodes. When a new node joins the network after a startup
phase, it can use this contention period to find its parent
and exchange schedules with its neighbours. The exchange
schedule process due to the addition of a new node, which
will be discussed in Section 4.6, is carried out to the sink in
each contention slot of a data gathering cycle.

In normal monitoring, communication between sensor
nodes follows the nodes’ schedules. Every node sends its
own data and forwards its descendants’ data to its parent
in collision-free slots. A node also has a special slot to broad-
cast synchronisation message or any messages to its chil-
dren. To further conserve energy, a sender node turns off
its radio if it has no data to send and a timeout forces a recei-
ver node back to sleep if it does not receive any packets.

When fire is detected by some nodes’ sensors, they
change their MAC to emergency mode and set the emer-
gency flag in their high and low priority packets. Note that
only their parents can receive the packets with the emer-
gency flag because they are scheduled to wake up. To
inform other neighbours of the emergency event, nodes
that detect fire also broadcast FIRE messages to their one
hop neighbours using their contention slots. The one-hop
neighbours that receive FIRE messages change their MAC
to emergency mode so they can give up their transmit slots
when needed by the nodes sensing the fire. The ancestors
of the nodes caught in fire change their MAC to emergency
mode when they receive data packets with the emergency
flag. These ancestors inform their one-hop neighbours to
switch to emergency mode by broadcasting FIRE messages
using their contention slots. The ancestors’ one-hop neigh-
bours change their MAC so they can give up their transmit
slots when needed by the nodes that are relaying emer-
gency traffic. During the emergency situation, the whole
network’s MAC protocol is not switched in an instant, but
hop by hop depending on the spread of the hazard. Nodes
that do not participate in the emergency monitoring
remain in the normal mode of ER-MAC.

Nodes change the behaviour of their MAC to emergency
mode to achieve high delivery ratio and low latency by
allowing contention in TDMA slots with the following rules:

1. An owner of a slot wakes up in the beginning of its
own transmit slot. If it has a high priority packet to
send, it transmits the packet immediately. If the
owner has no high priority packet to send, it allows
its one-hop neighbours with high priority packets to
contend for the slot.

2. All non-owners of the slot wake up in the beginning
of every slot to listen to the channel for possible con-
tention or reception of packets. If a non-owner with a
high priority packet senses no activities on the chan-
nel during t0, it contends for the slot during t1 by
sending a SLOT_REQUEST message to the owner of
the slot. The owner of the slot replies the request by
sending SLOT_ACKNOWLEDGEMENT to the requester.

3. The owner of the slot with low priority packets can
only use its own slot if during t0 þ t1 it does not receive
any SLOT_REQUEST messages from its neighbours.

4. A non-owner with low priority packet can contend
for the slot if during t0 þ t1 þ t2 it senses no activi-
ties on the channel. Then, it contends for the slot
during t3 by sending a SLOT_REQUEST message to
the owner of the slot. The owner of the slot replies
the request by sending SLOT_ACKNOWLEDGEMENT
to the requester. Therefore, a node with low priority
packets has a chance in every slot to contend for
sending a packet.
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A node that has switched to emergency mode may have
neighbours that still operate in normal mode. Hence, it has
to sense the channel before contending for its neighbours’
transmit slot to avoid collision. If it does not sense any
activities, it may contend for the slot, else it knows that
the neighbour which is not in emergency mode is using
its transmit slot. Moreover, to prevent a node sending an
emergency packet to a sleeping parent, the first emergency
packet is sent in a scheduled transmission slot. This will
allow the ancestors of the node to switch their MAC proto-
col to the emergency mode when they receive the emer-
gency packet. The delivery latency of the first emergency
packet is however the same as in normal situation, but
when nodes that involve in the emergency monitoring
have switched their MAC protocol to the emergency mode,
the latency of high priority packets is reduced.

A false alarm may happen in the network, where a node
mistakenly thinks that it detects fire. If it happens, this
node will inform its one-hop neighbours by sending a FAL-
SE_ALARM message to change their MAC behaviour back to
the normal mode. The ancestors of the node on the route to
the sink that have already switched to emergency mode
will change their MAC back to the normal mode if they
do not receive any emergency packets after n data gather-
ing cycles. They will also inform their one-hop neighbours
regarding the false alarm.

4.6. New nodes

The length of ER-MAC frame depends on the number of
nodes in the routing tree. When a new node is added, the
number of TDMA slots increases. ER-MAC supports addi-
tion of new nodes by utilising the contention slot at the
end of each TDMA frame. When a new node is deployed,
it has to listen to its neighbours’ SYNCHRONISATION and
data messages for at least one data gathering cycle. The
SYNCHRONISATION message has several pieces of informa-
tion that are useful to support addition of new nodes. The
information about sender’s ID and sender’s hop count to
the sink help the new node to select its parent. The new
node will select a parent that has the lowest hop count
to the sink. The SYNCHRONISATION message also reports
the current slot number, the highest slot number and the
clock of the prospective parent to help the new node syn-
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Fig. 10. Addition of a new node, where (a) is the original netw
chronises its clock and wait until the next contention slot
to perform schedule exchange.

The slot assignment for a new node is similar to the slot
assignment during the initial setup phase as described in
Section 4.2, except that the new node takes the highest slot
number incremented by one to be its slot number and the
schedule exchange is performed in a contention slot. The
new node generates a SCHEDULE_ANNOUNCEMENT mes-
sage, appends its schedule and broadcasts the message to
its one-hop neighbours. Nodes in its one-hop neighbour-
hood then re-broadcast this message to the two-hop
neighbours. The new node has to wait until it receives no
more SCHEDULE_NOT_CONFLICT messages from its two-
hop neighbourhood after broadcasting the SCHEDULE_
ANNOUNCEMENT. The new node then sends its assigned
schedule in a SCHEDULE_NOTIFICATION message directly
to its new parent. When the parent receives SCHEDULE_
NOTIFICATION message from the new node, it acknowl-
edges the new node as its child and adds the new node’s
transmit schedule to its receive schedule.

The parent then has to allocate one transmit slot to for-
ward the new node’s data and one slot to synchronise it if
the parent has no children before. The transmit slot and
the synchronisation slot are the new node’s slot number
incremented by one and two, respectively. The parent then
performs schedule exchange during the next contention
slot. The process of allocating new transmit slots because
of the addition of the new node is carried out along the
new node’s routers toward the sink in each contention slot
of a data gathering cycle. It takes approximately ðlþ 1Þ � t
seconds until the slot assignment reaches the sink after
the new node is deployed, where l is the new node’s hop
count to the sink and t is one data gathering cycle period.
Note that the one additional data gathering cycle is used
by the new node to overhear its neighbours’ SYNCHRONISA-
TION and data messages prior to assigning its own schedule.
The process of allocating new transmit slots because of the
addition of a new node is illustrated in Fig. 10.

The addition of new slots lengthens the TDMA frame.
Therefore, these changes must be informed to all nodes
and they have to adjust their TDMA frame length simulta-
neously in the beginning of a data gathering cycle. The new
node and the routers also start using their new allocated
slots in the same data gathering cycle. This will prevent
parent-child communication

one-hop communication
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ork and (b) shows the network after node 7 is added.



88 L. Sitanayah et al. / Ad Hoc Networks 20 (2014) 77–95
schedule clash where some part of the network has already
changed its TDMA frame length while some other still use
the old TDMA frame length. To apply the changes, a count
down timer, set to be lmax � t seconds, is piggybacked in
the sink’s SYNCHRONISATION message and is propagated
to the whole network when a node synchronises its chil-
dren. lmax is the highest hop count of the network. As the
timer expires, all nodes simultaneously use the new sched-
ules. The process of disseminating the new frame length
proceeds until all nodes change their TDMA frame length
and takes at most lmax data gathering cycle periods. Hence,
the total time needed for a new node to operate in TDMA
mode after it is deployed is ðlmax þ lþ 1Þ � t seconds.

The frame length inconsistencies, where some nodes
use old frame length and some nodes use new frame
length, are unlikely to happen because the synchronisation
slots are collision-free. Moreover, it takes lmax data gather-
ing cycle periods to disseminate the new frame length
information. If a node does not receive a SYNCHRONISA-
TION message due to temporary noisy links, it will receive
it in the next period. If the links are permanently noisy, the
node will find a new parent.

4.7. Dead nodes

A node is dead if it runs out of battery or is destroyed by
fire. We can also assume a node is dead if it cannot com-
municate with its parent or its children due to noisy links
or obstacles. If a parent does not receive any data during all
scheduled receive slots of a child after n consecutive data
gathering cycles (user parameter), where n is usually
greater than one to deal with temporary link failure, it
assumes that the child is dead. The parent then removes
the child from its children list. It also removes m scheduled
receive slots that are associated with that child to prevent
idle listening. If the child is the only child of that parent, it
also removes the synchronisation’s broadcast slot. More-
over, the parent also removes m transmit slots to forward
that child and its descendants’ data. The parent is then
responsible to inform all the routers toward the sink to
remove m receive slots associated with the removal of
one of its children and m transmit slots from their sched-
ules. This information is piggybacked on the data packet
sent in the immediate transmit slot. All of the unused slots
are then informed within two-hop neighbourhood in the
contention slot.

When a node does not receive SYNCHRONISATION mes-
sages after n data gathering cycles from its parent, it may
assume that its parent is dead. The orphan node then finds
a new parent by following the same procedure as the new
node deployment. In a contention slot, the orphan node
will send its transmit slots’ schedule in a SCHEDULE_NOTI-
FICATION message directly to its new parent, so the descen-
dants of the orphan node do not need to rebuild their
schedules. When the parent receives SCHEDULE_NOTIFICA-
TION from the orphan node, it acknowledges the orphan
node as its child and adds the orphan node’s transmit sche-
dule to its receive schedule. The parent then assigns new
transmit slots to forward its new child and new descen-
dants’ data. This schedule assignment is the same as the
new node’s assignment, except that there may be more
than one slot that needs to be allocated because the orphan
node may have children and descendants. To reuse some
released slots, this schedule assignment will firstly search
for the smallest available slot, which does not conflict with
the schedule of the node’s two-hop neighbours.

4.8. Protocol overhead

ER-MAC incurs higher protocol overhead at the begin-
ning, i.e. during topology discovery and TDMA slot assign-
ment phases. During this initial startup, ER-MAC
communicates using CSMA/CA, where there are RTS/CTS/
ACK in each transmission. After the initial startup, ER-
MAC’s protocol overhead during normal monitoring is only
caused by SYNCHRONISATION messages, which are sent
once each data gathering cycle by every node with child
(ren). This amount of overhead is fixed regardless of the
traffic rate and bounded by the number of nodes.

When the network monitors emergency, besides the
SYNCHRONISATION messages, FIRE or FALSE_ALARM mes-
sages, SLOT_REQUEST and SLOT_ACKNOWLEDGEMENT mes-
sages also contribute to the amount of protocol overhead.
These four types of messages are generated only by nodes
involved in emergency monitoring. Therefore, the amount
of the overhead depends on those nodes. While FIRE or
FALSE_ALARM messages are sent once every data gathering
cycle in the contention slot, SLOT_REQUEST and
SLOT_ACKNOWLEDGEMENT messages might be sent by sev-
eral nodes in every TDMA slot for possible contention.

4.9. Network lifetime

In this paper, we define the lifetime of the network T as
the time until the first node fails, i.e.

T ¼min
v2V

TðvÞ ð1Þ

The lifetime of a sensor node TðvÞ depends on how much
energy is available for its use EinitialðvÞ and how much
energy it consumes over time EusageðvÞ.

TðvÞ ¼ EinitialðvÞ
EusageðvÞ

ð2Þ

The predominant amount of energy consumed by a sen-
sor node is for sensing, communication, and data process-
ing activities. However, since the communication cost is
the most dominant factor in a sensor’s energy consump-
tion, we estimate the amount of energy used by a node v
as the amount of energy used to transmit EtxðvÞ, receive
ErxðvÞ and for other causes EotherðvÞ, such as sensors and
LEDs.

EusageðvÞ ¼ EtxðvÞ þ ErxðvÞ þ EotherðvÞ ð3Þ

The amount of energy consumption of a node to trans-
mit is proportional to the number of transmit slots in one
data gathering cycle. A node has several transmit slots to
forward its descendants’ data, one slot to forward its own
data and one slot to broadcast synchronisation message
to its children. Energy consumption of a node v to transmit
is formulated as
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EtxðvÞ ¼ num cycle� ðnum descendantsðvÞ þ 2Þ � Ptx � ttx

ð4Þ

where num_cycle is the number of data gathering cycles,
num_descendants(v) is the number of v’s descendants, Ptx

is the transmit power and ttx is the transmit time.
The amount of energy consumption of a node to receive

is proportional to the number of receive slots in one data
gathering cycle. A node has to wake up to receive data from
its descendants and one synchronisation message from its
parent. Energy consumption of a node v to receive is for-
mulated as

ErxðvÞ ¼ num cycle� ðnum descendantsðvÞ þ 1Þ � Prx � trx

ð5Þ

where Prx is the receive power and trx is the receive time.
Table 2
Simulation parameters in ns-2 based on Tmote sky hardware [36].

Simulation parameters Default value

Transmit power 52.2 mW
Receive power 59.1 mW
Idle power 59.1 mW
Sleep power 3 lW
Transition power 59.1 mW
Transition time 580 ls
Node initial energy 20,000 J

(2 � AA
batteries)

ER-MAC TDMA slot size 50 ms
ER-MAC TDMA sub-slot size 5 ms
Z-MAC TDMA slot size 50 ms
Z-MAC owner contention window size (To) 8
Z-MAC non-owner contention window size (Tno) 32
5. Evaluation of ER-MAC

By these experiments, we want to show that ER-MAC
delivers low latency for high priority packets especially
during emergency monitoring, it has fair packet delivery
and nodes in non-emergency mode behave in an energy-
efficient manner. In the simulation, we use the following
metrics to measure the performance of ER-MAC:

1. Average energy consumption per node is presented
to compare the energy efficiency of communication
protocols. The average energy consumption per
node is calculated as the total energy consumed by
the entire network during the simulation period
for listening, transmitting, receiving, switching from
sleep to idle mode and vice versa, averaged over the
total number of nodes in the network. The unit of
energy is the Joule. We want to show that ER-MAC
is energy-efficient in normal situations.

2. Packet delivery ratio is the total number of packets
received at the sink divided by the total number of
packets generated by the source nodes during the
lifetime of an experiment. Delivery ratio takes a
value in the interval [0, 1]. We want to show that
ER-MAC has high packet delivery ratio, especially
for high priority packets, for both normal and emer-
gency situations.

3. Average per packet latency measures the total time
needed for each packet to reach the sink since it was
sent by the source node, averaged over the total
number of packets received at the sink. The unit of
latency is the second. We want to show that the
average per packet latency, especially for high prior-
ity packets, is reduced during an emergency
situation.

4. Completeness measures the percentage of transmit-
ted packets received by the sink. We want to show
that the sink receives a fair distribution of packets
from across the network, regardless of distance
from the sink, and so we measure the completeness
averaged over all nodes at a given hop count from
the sink. In addition, we distinguish between high
and low priority packets.
We implemented ER-MAC in ns-2 [34]. Our simulation
results are based on the mean value of five different
network deployments that are simulated five times each
using random seeds, enough to achieve a 95% confidence
in the standard error interval. The network consists of
100 nodes deployed within randomly perturbed grids. This
is an approximation of manual deployments of sensor
nodes, for example in a building layout. In the random per-
turbed grids, each node is placed in one unit grid square of
8 m � 8 m and the coordinates are slightly perturbed. This
grid size is chosen in relation to the use of 10-metre trans-
mission range, which is realistic for 0 dBm transmission
power in an indoor environment [35]. The location of the
sink was fixed at the top-left corner of the network. We
use a simple wireless channel using the two-ray ground
radio propagation model. We also randomly select up to
n links and for each drop up to m packets, where m is large
enough to model unreliable links. Moreover, for simplicity,
we assume the links are symmetrical. Our simulation
parameters were based on Tmote sky hardware [36].
Table 2 presents our simulation parameters.
5.1. Protocol comparison

We compared the performance of ER-MAC with Z-MAC,
because this protocol has several similar characteristics
with ours, such as hybrid designs and allowing contention
in TDMA slots when the traffic load increases. We followed
the Z-MAC ns-2 installation manual detailed in [37] and
configured Z-MAC according to the default settings in [6].
Z-MAC’s configuration is shown in the simulation parame-
ters’s table (Table 2). In addition, we use the same 10-m
transmission range as in ER-MAC’s simulations. In each
experiment, we simulated data gathering for 300 s, where
every node except the sink is a source node that generates
packets with fixed intervals.

In the simulations, we compared the performance of ER-
MAC with Z-MAC in terms of average energy consumption
per node, packet delivery ratio, average per packet latency,
and completeness of packets received at the sink. For ER-
MAC simulations, we considered two network scenarios, i.e.
no-fire and in-fire situations. In the no-fire situation, commu-
nication among nodes follows their TDMA schedules. How-
ever, in the in-fire situation, ER-MAC allows contention for
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the TDMA slots within a one-hop neighbourhood if the owner
of the slot has no data to send. To simulate the in-fire situa-
tion, we assume all nodes operate in emergency mode from
the beginning of the simulation. For Z-MAC simulations, we
forced Z-MAC to operate in either Low Contention Level
(LCL) or High Contention Level (HCL) to model our no-fire
and in-fire situations, respectively. Note that in LCL, any node
can compete to transmit in any slots, but in HCL only the
owner of the current slot and their one-hop neighbours are
allowed to compete for the slot. Our simulation results show
that ER-MAC outperforms Z-MAC especially when the traffic
load increases.

Fig. 11 shows the average energy consumption per node
during the simulations. ER-MAC nodes in both no-fire and
in-fire situations consume less energy than Z-MAC nodes
that operate in LCL and HCL modes. This is because in ER-
MAC, the owner of the slot does not need to contend to
access the channel if it has data to send. However, in Z-
MAC, although the owner of the slot has priority to access
the medium, it has to contend for the medium before send-
ing its own data. The figure also shows that during the in-
fire situation, ER-MAC nodes spend more energy than the
no-fire situation, because they wake up in every slot for
possible contention. The energy consumption of ER-MAC
nodes during the in-fire situation is high when the traffic
load is low (less than 0.1 packets/node/s) because more
nodes do not use their own transmit slots to send their data,
but contend for their one-hop neighbours’ transmit slots if
the neighbours have no data to send. In other words, during
the in-fire situation, the lighter the load, the more the pos-
sibilities for contention in the network.

We also extended our simulations by increasing the
traffic load up to 1 packet/node/s, but saw no further var-
iation in energy consumption. In our simulation, the net-
work reaches its peak load at around 0.2 packets/node/s.
Hence, the energy consumption of nodes above the peak
load is stable as the nodes can only communicate using
their own scheduled time slots even though they have
more data to send in the queues. The possibility of conten-
tion above the peak load is also minimal because nodes
always have data to send in their own slots.
To compare the delivery ratio of high and low priority
packets, we force source nodes to generate the two kinds
of packets at the same time. Fig. 12 shows that ER-MAC’s
high priority packets achieve better delivery ratio than Z-
MAC’s packets and ER-MAC’s low priority packets. In the fig-
ure, the lines for Z-MAC’s low priority packets are hidden
below the high priority. Z-MAC delivers the same delivery
ratio for the two types of packets because it does not prior-
itise the high priority ones. When the traffic is very light, Z-
MAC that operates in HCL mode achieves higher delivery
ratio than ER-MAC because of data retransmissions when
the packets are lost and the senders do not receive acknowl-
edgements. On the other hand, ER-MAC does not acknowl-
edge every data packets and so it does not retransmit lost
data. Even though the delivery ratios of ER-MAC’s high pri-
ority packets decrease when the traffic load increases, its
delivery ratio in the in-fire situation is slightly higher than
in the no-fire situation. This phenomenon is caused by con-
tention in TDMA slots to prioritise the propagation of high
priority packets during the emergency. However, the deliv-
ery ratio of ER-MAC’s high priority packets does not change
much from no-fire to in-fire because when nodes generate
more traffic, the chance for contention is minimal.

Fig. 13 shows the average per packet latency of our simu-
lations. ER-MAC’s high priority packets generally have lower
latency compared to Z-MAC’s high priority packets. This is
because ER-MAC maintains two priority queues that sepa-
rate high priority packets from low priority ones and the high
priority packets are always transmitted first until the queue
is empty. On the other hand, Z-MAC only uses one queue and
sends the high and low priority packets one after another,
and so the latency of Z-MAC’s high and low priority packets
is almost identical. Moreover, ER-MAC prioritises high prior-
ity packets and so the latency of low priority packets is high.
During the in-fire situation, ER-MAC’s high priority packets’
latency is reduced because nodes can propagate data quickly
by contending for some unused slots.

When we increase the traffic load up to 1 packet/node/s,
the latency of ER-MAC’s high priority packets rises. On the
other hand, the latency of Z-MAC’s packets and ER-MAC’s
low priority packets drops as we observe in the
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simulations that fewer packets are received at the sink and
most of them are from nodes near it.

As explained in Section 4.4, we implement priority
queues by considering fairness over the packets’ sources.
The reason behind this modification is we want the sink
to have a balance of information from all sensor nodes in
Sink

In-fir

1-ho

Ance

1-ho

Fig. 15. A cluster of no
the network. Fig. 14 shows the completeness of the packets
received at the sink when the network reaches its peak
load, i.e. 0.2 packets/node/s. We measure the completeness
as the percentage of packets received plotted against hop
count. The graph shows that the completeness of ER-MAC’s
high priority packets for both no-fire and in-fire situations
are higher than Z-MAC’s packets and ER-MAC’s low prior-
ity packets. This happens because of packet prioritisation
and priority queue modification in ER-MAC to transmit
one packet from each node during one data gathering cycle
period.

5.2. Behaviour when a cluster of nodes detects fire

We consider the situation when some nodes in a net-
work detect fire. Nodes that detect fire become in-fire
nodes. They change their MAC behaviour to emergency
mode, set the emergency flag in each of their high and
low priority packets and broadcast emergency messages
to their one-hop neighbours during contention slots. The
one-hop neighbours also switch to emergency mode but
do not set the emergency flag in their data packets. When
the ancestors of the in-fire nodes receive data packets with
the emergency flag, they change their MAC to emergency
mode and broadcast emergency messages to their one-
hop neighbours to change their MAC. Neither the ancestors
nor their one-hop neighbours set the emergency flag in any
of their packets. This situation is illustrated in Fig. 15.

We evaluate the performance of ER-MAC against Z-MAC
when a cluster of nodes detects fire. For each simulation,
we run a 500-s data gathering, where all nodes are the
sources of high and low priority packets. They generate a
constant 0.1 packets/node/s traffic rate. 100 s after the sim-
ulation starts, a random location in the network is on fire.
We choose five nodes, which are the closest nodes to the
fire location, as in-fire nodes. The in-fire nodes double
the traffic generation rate to 0.2 packets/node/s and halve
the packet deadline.

Fig. 16 shows the average energy consumption per node
during the 500-s simulations. The results reported at the
100th second is when the network is not on fire. As the fire
starts at the 100th second, we start to plot the emergency
monitoring results from the 200th second. The simulation
results show that ER-MAC is energy-efficient during this
emergency monitoring as nodes consume less than one
e nodes

p neighbours of the in-fire nodes

stors of the in-fire nodes

p neighbours of the in-fire nodes' ancestors

des detects fire.
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Fig. 16. Energy consumption of ER-MAC versus Z-MAC when a cluster of
nodes detects fire.
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Fig. 17. Delivery ratio of ER-MAC versus Z-MAC when a cluster of nodes
detects fire.
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Fig. 18. Latency of ER-MAC versus Z-MAC when a cluster of nodes detects
fire.
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Fig. 19. Energy consumption of ER-MAC versus Z-MAC under variable
traffic load.
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fifth of Z-MAC’s energy consumption. The figure also
shows that with ER-MAC, nodes that participate in the
emergency monitoring, i.e. the in-fire nodes, the one-hop
neighbours of the in-fire nodes, the ancestors of the in-fire
nodes and the ancestors’ one-hop neighbours, dominate
the energy consumption of the network. Conversely, the
rest of the network, which operates in the normal mode
of ER-MAC, is very energy-efficient. Z-MAC does not distin-
guish between nodes that participate in the emergency
monitoring and the normal monitoring. It switches from
LCL to HCL mode if it detects heavy traffic loads. In addi-
tion, nodes that operate in the HCL and LCL modes of Z-
MAC have been shown to consume almost the same
amount of energy in Fig. 11.

Fig. 17 presents the delivery ratio of high and low prior-
ity packets with and without an emergency flag. Recall that
only in-fire nodes generate packets with the emergency
flag and their reporting frequency is twice as high as the
normal data. Because of the ability to prioritise packets,
ER-MAC achieves higher delivery ratio for emergency and
normal high priority packets compared to Z-MAC, even
though it sacrifices the low priority ones. ER-MAC also
delivers the emergency high priority packets with the low-
est latency as shown in Fig. 18. This happens because
emergency packets have shorter deadline than normal
packets and so they are placed in the front of the queue.
In our priority queue modification, the emergency packets
are given the priority to be sent after one packet from each
descendant has been sent.

5.3. Behaviour under variable traffic load

In this simulation, we vary the traffic load during 500-s
simulations. The traffic changes every 100 s. It jumps from
0.1 to 0.4 packets/node/s, then drops to 0.1 packets/node/s,
and so forth. We vary the load in order to illustrate the
changes in network conditions from no-fire to in-fire, then
from in-fire to no-fire, and so on. When a node generates
more traffic, it changes the MAC behaviour from the nor-
mal mode to the emergency mode. When it generates less
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Fig. 20. Delivery ratio of ER-MAC versus Z-MAC under variable traffic
load.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Time (sec)

Av
g.

 p
er

 p
ac

ke
t l

at
en

cy
 (s

ec
)

ER−MAC − high priority
ER−MAC − low priority
Z−MAC − high priority
Z−MAC − low priority

Fig. 21. Latency of ER-MAC versus Z-MAC under variable traffic load.
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Fig. 22. Energy consumption and latency of ER-MAC for network
reconnectivity when some nodes die gradually.
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traffic, it changes back to the normal mode. Figs. 19–21
show the comparison of ER-MAC against Z-MAC when
the traffic changes over time in terms of average energy
consumption per node, packet delivery ratio and average
per packet latency, respectively.

Overall, ER-MAC outperforms Z-MAC because it is more
energy-efficient and its high priority packets have better
delivery ratio and latency compared to Z-MAC’s. The zigzag
behaviour in the delivery ratio plot is caused by changes in
the traffic rate every 100 s. When sensor nodes increase
the rate from 0.1 to 0.4 packets/node/s, more data packets
are generated and since the MAC behaviour is changed to
the emergency mode, more protocol overhead incurred
for contention in TDMA slots. Therefore, the delivery ratio
during this period drops. In Figs. 20 and 21, the delivery
ratio and latency of Z-MAC’s high and low priority packets
overlap because Z-MAC only uses one queue and sends the
high and low priority packets one after another.
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Fig. 23. Energy consumption and latency of ER-MAC for network
reconnectivity when some nodes die simultaneously.
5.4. Behaviour when topology changes

We want to show that ER-MAC is topology adaptive by
simulating networks while sensor nodes are failing. In the
simulation, we increase the number of dead nodes from
one to five and calculate the average energy consumption
and time needed to reconfigure the network. The energy
consumption to reconfigure the network is the amount of
energy spent by orphan nodes to find their new parents
and to announce new schedules in contention slots. The
network reconnectivity latency is calculated from the time
a node knows that its parent is dead until it uses its new
TDMA schedules. In this simulation, a node is considered
dead if after two data gathering cycles, its parent and chil-
dren do not receive any packets from it. These simulation
results are depicted in Fig. 22. The amount of energy spent
by a node to find a new parent is very small, i.e. less than
0.000125% of its initial energy. The reconnectivity latency
slightly increases when more nodes die because the path
length of an orphan node to the sink may be lengthened
when it finds a new parent.
We also simulate the situation where several nodes die
simultaneously. The simulation results are depicted in



Fig. 24. ER-MAC’s protocol overhead traffic percentage.
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Fig. 23, where we increase the number of dead nodes from
5 to 20. The energy consumption and latency to reconfig-
ure the network decrease when the number of dead nodes
goes over 15 because the network gets partitioned as the
number of failed node increases. Hence, we only measure
the energy expenditure and time to reconfigure the net-
work from the remaining nodes that are still connected
to the sink.

5.5. Protocol overhead

In Fig. 24, we compare the percentage of ER-MAC’s
overhead traffic to data traffic in three network situations,
i.e. no-fire, in-fire, and when a cluster of five nodes detects
fire as described in Section 5.2. In these three scenarios, the
no-fire nodes and in-fire nodes generate a constant 0.1
packets/node/s and 0.2 packets/node/s traffic rate,
respectively.

ER-MAC’s overhead during the initial setup includes the
messages exchanged for topology discovery and TDMA slot
assignment. During the data gathering period, ER-MAC’s
protocol overhead for no-fire nodes is only caused by SYN-
CHRONISATION messages, which are sent once each data
gathering cycle by every node with child (ren). This
amount of overhead is fixed regardless of the traffic rate
and bounded by the number of nodes. Besides SYNCHRONI-
SATION messages, the amount of overhead for in-fire nodes
is caused by FIRE or FALSE_ALARM, SLOT_REQUEST, and
SLOT_ACKNOWLEDGEMENT. Since the other four types of
messages are generated only by in-fire nodes, the amount
of the overhead depends on those nodes. FIRE or FALSE_A-
LARM messages are sent once every data gathering cycle in
the contention slot. However, SLOT_REQUEST and
SLOT_ACKNOWLEDGEMENT messages might be sent by sev-
eral nodes in every TDMA slot for possible contention.

6. Conclusion

In this paper, we present ER-MAC, a hybrid MAC proto-
col for emergency response WSNs with flexibility to adapt
well to traffic and topology changes. ER-MAC schedules
collision-free slots, so during the normal monitoring, nodes
only wake up for their scheduled slots, but otherwise sleep
to save energy. During an emergency, nodes that partici-
pate in the emergency monitoring change their MAC
behaviour by allowing contention in each slot to achieve
high delivery ratio and low latency, but have to sacrifice
energy efficiency. ER-MAC is designed to prioritise high
priority packets. It also offers a synchronised and loose slot
structure, where nodes can modify their schedules locally.
Our ns-2 simulation results demonstrate the scalability of
ER-MAC and show that ER-MAC achieves higher delivery
ratio and lower latency at low energy consumption com-
pared to Z-MAC.

Our future work includes the incorporation of dynamic
link estimation, such as using the Received Signal Strength
Indicator (RSSI) [38], into ER-MAC. We will also consider
network security, which is an important aspect in emer-
gency response application, to prevent an attacker from
switching the network into emergency mode as often as
possible to deplete nodes’ energy and flooding the network
with high priority packets to fill in the queue with bogus
data.
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